Stability Analysis for a Class of Discrete-Time Nonhomogeneous Markov Jump Systems with Multiplicative Noises
This paper is concerned with a class of discrete-time nonhomogeneous Markov jump systems with multiplicative noises and time-varying transition probability matrices which are valued on a convex polytope. The stochastic stability and finite-time stability are considered. Some stability criteria inclu...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2018/1586846 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper is concerned with a class of discrete-time nonhomogeneous Markov jump systems with multiplicative noises and time-varying transition probability matrices which are valued on a convex polytope. The stochastic stability and finite-time stability are considered. Some stability criteria including infinite matrix inequalities are obtained by parameter-dependent Lyapunov function. Furthermore, infinite matrix inequalities are converted into finite linear matrix inequalities (LMIs) via a set of slack matrices. Finally, two numerical examples are given to demonstrate the validity of the proposed theoretical methods. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |