Splitting and Merging for Active Contours: Plug-and-Play
This study tackles the challenge of splitting and merging in parametric active contours or snakes. The proposed method comprises three stages: (1) fully 4-connected interpolation, (2) snake splitting, and (3) snakes merging. For this purpose, first, the coordinates of snake points are separated into...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/6/991 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study tackles the challenge of splitting and merging in parametric active contours or snakes. The proposed method comprises three stages: (1) fully 4-connected interpolation, (2) snake splitting, and (3) snakes merging. For this purpose, first, the coordinates of snake points are separated into two corrupted 1D signals, with missing X/Y samples in the signals representing missing snakes’ coordinates. These missing X/Y samples are estimated using a constrained Tikhonov regularisation model, ensuring fully 4-connected snakes. Next, crossing points are identified by plotting snake points onto a raster matrix, detecting overlaps where multiple snake points occupy the same raster cell. Finally, snakes are split or merged by extracting snake points between crossing snake points that form a loop using a heuristic approach. Experimental results on the boundary detection of enamel in Micro-CT images and coronary arteries’ lumen in CT images demonstrate the proposed method’s ability to handle contour splitting and merging effectively. |
|---|---|
| ISSN: | 2227-7390 |