Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010

Seeing is a key factor affecting the image quality of astronomical observations and can be quantitatively described by the Fried parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi...

Full description

Saved in:
Bibliographic Details
Main Authors: Xing Hu, Shangbin Yang, Tengfei Song, Xingming Bao, Wenjun Sun, Yuanyong Deng, Yu Liu, Mingyu Zhao
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/6/169
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850164694189342720
author Xing Hu
Shangbin Yang
Tengfei Song
Xingming Bao
Wenjun Sun
Yuanyong Deng
Yu Liu
Mingyu Zhao
author_facet Xing Hu
Shangbin Yang
Tengfei Song
Xingming Bao
Wenjun Sun
Yuanyong Deng
Yu Liu
Mingyu Zhao
author_sort Xing Hu
collection DOAJ
description Seeing is a key factor affecting the image quality of astronomical observations and can be quantitatively described by the Fried parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula>. The larger the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> value (in unit of cm), the better the seeing conditions. Currently, daytime seeing measurements are primarily conducted using the Solar Differential Image Motion Monitor (SDIMM) or the spectral ratio method. In this work, we propose a neural network model for estimating daytime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula>. The experimental results of the training set and the test set show that this model can currently estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> with an accuracy exceeding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</mn><mo>%</mo></mrow></semantics></math></inline-formula>. Using this model, we estimate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> of the Huairou Solar Observing Station (HSOS) in 22 consecutive years from 1989 to 2010. The median <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> of HSOS in 22 consecutive years was around 2.5 cm, and the best seeing condition was in April and September of one year. This result confirmed the long-term stability of seeing conditions. In addition, we conducted an error analysis comparing the seeing measured by SDIMM and the results obtained by the spectral ratio method both under domeless and domed conditions. The results indicate a significant correlation between the SDIMM results and the spectral ratio method results, with first-order fitting coefficients of 2.2 and 2.9, respectively.
format Article
id doaj-art-6084fecddf914c4ab01a5ef87f6206cc
institution OA Journals
issn 2218-1997
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj-art-6084fecddf914c4ab01a5ef87f6206cc2025-08-20T02:21:54ZengMDPI AGUniverse2218-19972025-05-0111616910.3390/universe11060169Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010Xing Hu0Shangbin Yang1Tengfei Song2Xingming Bao3Wenjun Sun4Yuanyong Deng5Yu Liu6Mingyu Zhao7State Key Laboratory of Solar Activity and Space Weather, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, ChinaState Key Laboratory of Solar Activity and Space Weather, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Solar Activity and Space Weather, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, ChinaState Key Laboratory of Solar Activity and Space Weather, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, ChinaState Key Laboratory of Solar Activity and Space Weather, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, ChinaSchool of Physical Science and Technology, Southwest Jiaotong University, Chengdu 611756, ChinaYunnan Observatories, Chinese Academy of Sciences, Kunming 650217, ChinaSeeing is a key factor affecting the image quality of astronomical observations and can be quantitatively described by the Fried parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula>. The larger the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> value (in unit of cm), the better the seeing conditions. Currently, daytime seeing measurements are primarily conducted using the Solar Differential Image Motion Monitor (SDIMM) or the spectral ratio method. In this work, we propose a neural network model for estimating daytime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula>. The experimental results of the training set and the test set show that this model can currently estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> with an accuracy exceeding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</mn><mo>%</mo></mrow></semantics></math></inline-formula>. Using this model, we estimate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> of the Huairou Solar Observing Station (HSOS) in 22 consecutive years from 1989 to 2010. The median <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mn>0</mn></msub></semantics></math></inline-formula> of HSOS in 22 consecutive years was around 2.5 cm, and the best seeing condition was in April and September of one year. This result confirmed the long-term stability of seeing conditions. In addition, we conducted an error analysis comparing the seeing measured by SDIMM and the results obtained by the spectral ratio method both under domeless and domed conditions. The results indicate a significant correlation between the SDIMM results and the spectral ratio method results, with first-order fitting coefficients of 2.2 and 2.9, respectively.https://www.mdpi.com/2218-1997/11/6/169day-time seeingneural networkestimationerror analysis
spellingShingle Xing Hu
Shangbin Yang
Tengfei Song
Xingming Bao
Wenjun Sun
Yuanyong Deng
Yu Liu
Mingyu Zhao
Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
Universe
day-time seeing
neural network
estimation
error analysis
title Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
title_full Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
title_fullStr Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
title_full_unstemmed Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
title_short Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
title_sort estimation of day time seeing changes at huairou solar observing station based on neural networks from 1989 to 2010
topic day-time seeing
neural network
estimation
error analysis
url https://www.mdpi.com/2218-1997/11/6/169
work_keys_str_mv AT xinghu estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT shangbinyang estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT tengfeisong estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT xingmingbao estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT wenjunsun estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT yuanyongdeng estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT yuliu estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010
AT mingyuzhao estimationofdaytimeseeingchangesathuairousolarobservingstationbasedonneuralnetworksfrom1989to2010