Subpixel Mapping Method of Hyperspectral Images Based on Modified Binary Quantum Particle Swarm Optimization
Subpixel mapping technology can determine the specific location of different objects in the mixed pixel and effectively solve the uncertainty of the ground features spatial distribution in traditional classification technology. Existing methods based on linear optimization encounter the premature an...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Electrical and Computer Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/2683248 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Subpixel mapping technology can determine the specific location of different objects in the mixed pixel and effectively solve the uncertainty of the ground features spatial distribution in traditional classification technology. Existing methods based on linear optimization encounter the premature and local convergence of the optimization algorithm. This paper proposes a subpixel mapping method based on modified binary quantum particle swarm optimization (MBQPSO) to solve the above issues. The initial subpixel mapping imagery is obtained according to spectral unmixing results. We focus mainly on the discretization of QPSO, which is implemented by modifying the discrete update process of particle location, to minimize the objective function, which is formulated based on different connected regional perimeter calculating methods. To reduce time complexity, a target optimization strategy of global iteration combined with local iteration is performed. The MBQPSO is tested on standard test functions and results show that MBQPSO has the best performance on global optimization and convergent rate. Then, we analyze the proposed algorithm qualitatively and quantitatively by simulated and real experiment; results show that the method combined with MBQPSO and objective function, which is formulated based on the gap length between region and background, has the best performance in accuracy and efficiency. |
---|---|
ISSN: | 2090-0147 2090-0155 |