Blue Laser Diode Annealed Top-Gate Low Temperature Poly-Si TFTs With Low Resistance of Source/Drain From Deposited n+ Layer
In this letter, a high performance and large area feasible top-gate low-temperature polysilicon thin film transistor (LTPS TFT) technology is reported. The poly-Si active layer was formed by crystallizing the plasma enhanced chemical vapor deposited (PECVD) amorphous silicon (a-Si) film using the bl...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Journal of the Electron Devices Society |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10506233/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter, a high performance and large area feasible top-gate low-temperature polysilicon thin film transistor (LTPS TFT) technology is reported. The poly-Si active layer was formed by crystallizing the plasma enhanced chemical vapor deposited (PECVD) amorphous silicon (a-Si) film using the blue laser diode anneal (BLDA) technique. The low resistance of source-drain (S/D) regions were formed from a heavily-doped PECVD a-Si layer. The fabricated top-gate LTPS TFTs exhibit excellent electrical performances, with the carrier mobility more than 556.66 cm2/V-s and on/off-current ratio over <inline-formula> <tex-math notation="LaTeX">$1.58\times 10^{7}$ </tex-math></inline-formula>. This proposed technology is expected to promote the manufacturing lines to the higher generations. |
---|---|
ISSN: | 2168-6734 |