Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space

Several Simpson 1 8 tensorial type inequalities for selfadjoint operators have been obtained with variation depending on the conditions imposed on the function f ||1/8[f(A)⊗1 + 6f(A⊗1 + 1⊗B/2) + 1⊗f(B)] − ∫01f(λ1⊗B + (1−λ)A⊗1)dλ|| ≤ 5||1⊗B − A⊗1||/32 ||f’||I,+∞.

Saved in:
Bibliographic Details
Main Authors: Vuk Stojiljković, Sever Silvestru Dragomir
Format: Article
Language:English
Published: Ada Academica 2024-06-01
Series:European Journal of Mathematical Analysis
Online Access:https://adac.ee/index.php/ma/article/view/236
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850101949193519104
author Vuk Stojiljković
Sever Silvestru Dragomir
author_facet Vuk Stojiljković
Sever Silvestru Dragomir
author_sort Vuk Stojiljković
collection DOAJ
description Several Simpson 1 8 tensorial type inequalities for selfadjoint operators have been obtained with variation depending on the conditions imposed on the function f ||1/8[f(A)⊗1 + 6f(A⊗1 + 1⊗B/2) + 1⊗f(B)] − ∫01f(λ1⊗B + (1−λ)A⊗1)dλ|| ≤ 5||1⊗B − A⊗1||/32 ||f’||I,+∞.
format Article
id doaj-art-5fc85047338b48bb97c85fa4ebc6ec27
institution DOAJ
issn 2733-3957
language English
publishDate 2024-06-01
publisher Ada Academica
record_format Article
series European Journal of Mathematical Analysis
spelling doaj-art-5fc85047338b48bb97c85fa4ebc6ec272025-08-20T02:39:52ZengAda AcademicaEuropean Journal of Mathematical Analysis2733-39572024-06-014171710.28924/ada/ma.4.17236Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert SpaceVuk Stojiljković0Sever Silvestru Dragomir1Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, SerbiaMathematics, College of Sport Health and Engineering, Victoria University Melbourne City, VIC 8001, AustraliaSeveral Simpson 1 8 tensorial type inequalities for selfadjoint operators have been obtained with variation depending on the conditions imposed on the function f ||1/8[f(A)⊗1 + 6f(A⊗1 + 1⊗B/2) + 1⊗f(B)] − ∫01f(λ1⊗B + (1−λ)A⊗1)dλ|| ≤ 5||1⊗B − A⊗1||/32 ||f’||I,+∞.https://adac.ee/index.php/ma/article/view/236
spellingShingle Vuk Stojiljković
Sever Silvestru Dragomir
Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space
European Journal of Mathematical Analysis
title Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space
title_full Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space
title_fullStr Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space
title_full_unstemmed Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space
title_short Tensorial Simpson 1/8 Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Space
title_sort tensorial simpson 1 8 type inequalities for convex functions of selfadjoint operators in hilbert space
url https://adac.ee/index.php/ma/article/view/236
work_keys_str_mv AT vukstojiljkovic tensorialsimpson18typeinequalitiesforconvexfunctionsofselfadjointoperatorsinhilbertspace
AT seversilvestrudragomir tensorialsimpson18typeinequalitiesforconvexfunctionsofselfadjointoperatorsinhilbertspace