A Comprehensive Review of Crop Chlorophyll Mapping Using Remote Sensing Approaches: Achievements, Limitations, and Future Perspectives

Chlorophyll absorbs light energy and converts it into chemical energy, making it a crucial biochemical parameter for monitoring vegetation health, detecting environmental stress, and predicting physiological states. Accurate and rapid estimation of canopy chlorophyll content is crucial for assessing...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuan Li, Bingxue Zhu, Sijia Li, Lushi Liu, Kaishan Song, Jiping Liu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2345
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chlorophyll absorbs light energy and converts it into chemical energy, making it a crucial biochemical parameter for monitoring vegetation health, detecting environmental stress, and predicting physiological states. Accurate and rapid estimation of canopy chlorophyll content is crucial for assessing vegetation dynamics, ecological changes, and growth patterns. Remote sensing technology has become an indispensable tool for monitoring vegetation chlorophyll content since 2015, with more than 50 research papers published annually, contributing to a substantial body of case studies. This review discusses remote sensing technologies currently used for estimating vegetation chlorophyll content, focusing on four key aspects: the acquisition of reference datasets, the identification of optimal spectral variables, the selection of estimation models, and the analysis of application scenarios. The results indicate that spectral bands in the visible and red-edge regions (e.g., 530 nm, 670 nm, and 705 nm) provide high prediction accuracy. Machine learning methods, such as random forest and support vector regression, exhibit excellent performance, with determination coefficients (R<sup>2</sup>) typically exceeding 0.9, although overfitting remains an issue. Although radiative transfer models are slightly less accurate (R<sup>2</sup> = 0.6–0.8), they provide greater interpretability. Hybrid models integrating machine learning and radiative transfer show strong potential to balance accuracy and generalizability. Future research should improve model generalizability for different vegetation types and environmental conditions and integrate multi-source remote sensing data to improve spatial and temporal resolution. Combining physical models with data processing methods, such as artificial intelligence, can improve scalability, cost-effectiveness, and real-time monitoring capabilities.
ISSN:1424-8220