kHz Noise-Suppressed Asymmetric Dual-Cavity Bidirectional Femtosecond Fiber Laser
We demonstrate a novel bidirectional mode-locked ultrafast fiber laser based on an asymmetric dual-cavity architecture that enables freely tunable repetition rate differentials at the kilohertz level, while maintaining inherent common-mode noise suppression through precision thermomechanical stabili...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/7/671 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We demonstrate a novel bidirectional mode-locked ultrafast fiber laser based on an asymmetric dual-cavity architecture that enables freely tunable repetition rate differentials at the kilohertz level, while maintaining inherent common-mode noise suppression through precision thermomechanical stabilization. Through cascaded amplification and nonlinear temporal compression, we obtained bidirectional pulse durations of 33.2 fs (clockwise) and 61.6 fs (counterclockwise), respectively. The developed source demonstrates exceptional capability for asynchronous optical sampling applications, particularly in enabling the compact implementation of real-time measurement systems such as terahertz time-domain spectroscopy (THz-TDS) systems. |
|---|---|
| ISSN: | 2304-6732 |