Protection without poison: why tropical ozone maximizes in the interior of the atmosphere

<p>The number density of ozone, <span class="inline-formula">[O<sub>3</sub>]</span>, maximizes around 26 km in the tropics, protecting life from harmful ultraviolet (UV) light without poisoning it at the surface. Textbooks explain this interior maximum with tw...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Match, E. P. Gerber, S. Fueglistaler
Format: Article
Language:English
Published: Copernicus Publications 2025-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/4349/2025/acp-25-4349-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850156381342007296
author A. Match
E. P. Gerber
S. Fueglistaler
author_facet A. Match
E. P. Gerber
S. Fueglistaler
author_sort A. Match
collection DOAJ
description <p>The number density of ozone, <span class="inline-formula">[O<sub>3</sub>]</span>, maximizes around 26 km in the tropics, protecting life from harmful ultraviolet (UV) light without poisoning it at the surface. Textbooks explain this interior maximum with two paradigms: (1) the <i>source-controlled paradigm</i> explains <span class="inline-formula">[O<sub>3</sub>]</span> as maximizing where its source maximizes between abundant photons aloft and abundant <span class="inline-formula">[O<sub>2</sub>]</span> below, and (2) the <i>source</i> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="57ee8123d9c9aefcf23d9c7f6463c158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-4349-2025-ie00001.svg" width="8pt" height="14pt" src="acp-25-4349-2025-ie00001.png"/></svg:svg></span></span> <i>sink competition paradigm</i>, inspired by the Chapman cycle, explains ozone as scaling with <span class="inline-formula">[O<sub>2</sub>]</span> and the photolytic source <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="073414a2b77546d8d5847ae97897d626"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-4349-2025-ie00002.svg" width="8pt" height="14pt" src="acp-25-4349-2025-ie00002.png"/></svg:svg></span></span> sink ratio. However, each paradigm's prediction for the altitude of peak <span class="inline-formula">[O<sub>3</sub>]</span> is off by 10 km, reflecting their well-known omission of ozone sinks from catalytic cycles and transport. We present a minimal, steady-state theory for the tropical stratospheric <span class="inline-formula">[O<sub>3</sub>]</span> maximum, accurate to within 1 km and formulated in terms of the dominant ozone sinks. These sinks are represented simply by augmenting the Chapman cycle with linear damping of O and O<span class="inline-formula"><sub>3</sub></span>, leading to the Chapman<span class="inline-formula">+</span>2 model. The Chapman<span class="inline-formula">+</span>2 model correctly simulates peak tropical <span class="inline-formula">[O<sub>3</sub>]</span> at 26 km, yet this peak is not explained by either paradigm. Instead, the peak is newly explained by the transition from an O-damped regime aloft to an O<span class="inline-formula"><sub>3</sub></span>-damped regime below. An explicit analytical expression is derived for ozone under gray radiation. This theory accurately predicts an interior maximum of ozone and correctly predicts that an increase in top-of-atmosphere UV light will lead to a downward shift in the peak <span class="inline-formula">[O<sub>3</sub>]</span> due to a downward shift in the regime transition, a result not even qualitatively predicted by the existing paradigms.</p>
format Article
id doaj-art-5f3dd187f7bb49809995e422fb228a31
institution OA Journals
issn 1680-7316
1680-7324
language English
publishDate 2025-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-5f3dd187f7bb49809995e422fb228a312025-08-20T02:24:34ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-04-01254349436610.5194/acp-25-4349-2025Protection without poison: why tropical ozone maximizes in the interior of the atmosphereA. Match0E. P. Gerber1S. Fueglistaler2Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USACenter for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USAProgram in Atmospheric and Oceanic Sciences, and Department of Geosciences, Princeton University, Princeton, NJ, USA<p>The number density of ozone, <span class="inline-formula">[O<sub>3</sub>]</span>, maximizes around 26 km in the tropics, protecting life from harmful ultraviolet (UV) light without poisoning it at the surface. Textbooks explain this interior maximum with two paradigms: (1) the <i>source-controlled paradigm</i> explains <span class="inline-formula">[O<sub>3</sub>]</span> as maximizing where its source maximizes between abundant photons aloft and abundant <span class="inline-formula">[O<sub>2</sub>]</span> below, and (2) the <i>source</i> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="57ee8123d9c9aefcf23d9c7f6463c158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-4349-2025-ie00001.svg" width="8pt" height="14pt" src="acp-25-4349-2025-ie00001.png"/></svg:svg></span></span> <i>sink competition paradigm</i>, inspired by the Chapman cycle, explains ozone as scaling with <span class="inline-formula">[O<sub>2</sub>]</span> and the photolytic source <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="073414a2b77546d8d5847ae97897d626"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-4349-2025-ie00002.svg" width="8pt" height="14pt" src="acp-25-4349-2025-ie00002.png"/></svg:svg></span></span> sink ratio. However, each paradigm's prediction for the altitude of peak <span class="inline-formula">[O<sub>3</sub>]</span> is off by 10 km, reflecting their well-known omission of ozone sinks from catalytic cycles and transport. We present a minimal, steady-state theory for the tropical stratospheric <span class="inline-formula">[O<sub>3</sub>]</span> maximum, accurate to within 1 km and formulated in terms of the dominant ozone sinks. These sinks are represented simply by augmenting the Chapman cycle with linear damping of O and O<span class="inline-formula"><sub>3</sub></span>, leading to the Chapman<span class="inline-formula">+</span>2 model. The Chapman<span class="inline-formula">+</span>2 model correctly simulates peak tropical <span class="inline-formula">[O<sub>3</sub>]</span> at 26 km, yet this peak is not explained by either paradigm. Instead, the peak is newly explained by the transition from an O-damped regime aloft to an O<span class="inline-formula"><sub>3</sub></span>-damped regime below. An explicit analytical expression is derived for ozone under gray radiation. This theory accurately predicts an interior maximum of ozone and correctly predicts that an increase in top-of-atmosphere UV light will lead to a downward shift in the peak <span class="inline-formula">[O<sub>3</sub>]</span> due to a downward shift in the regime transition, a result not even qualitatively predicted by the existing paradigms.</p>https://acp.copernicus.org/articles/25/4349/2025/acp-25-4349-2025.pdf
spellingShingle A. Match
E. P. Gerber
S. Fueglistaler
Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
Atmospheric Chemistry and Physics
title Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
title_full Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
title_fullStr Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
title_full_unstemmed Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
title_short Protection without poison: why tropical ozone maximizes in the interior of the atmosphere
title_sort protection without poison why tropical ozone maximizes in the interior of the atmosphere
url https://acp.copernicus.org/articles/25/4349/2025/acp-25-4349-2025.pdf
work_keys_str_mv AT amatch protectionwithoutpoisonwhytropicalozonemaximizesintheinterioroftheatmosphere
AT epgerber protectionwithoutpoisonwhytropicalozonemaximizesintheinterioroftheatmosphere
AT sfueglistaler protectionwithoutpoisonwhytropicalozonemaximizesintheinterioroftheatmosphere