On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations

We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We s...

Full description

Saved in:
Bibliographic Details
Main Authors: Cancès, Clément, Venel, Juliette
Format: Article
Language:English
Published: Académie des sciences 2023-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.421/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206233075810304
author Cancès, Clément
Venel, Juliette
author_facet Cancès, Clément
Venel, Juliette
author_sort Cancès, Clément
collection DOAJ
description We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We show that the scheme admits a unique discrete solution, that the natural bounds on the solution are preserved, and that it encodes the second principle of thermodynamics in the sense that some free energy is dissipated along time. The convergence of the scheme is then rigorously established thanks to compactness arguments. Numerical simulations are finally provided, highlighting the overall good behavior of the scheme.
format Article
id doaj-art-5ef3ccd17f40404da62eabbf074b3784
institution Kabale University
issn 1778-3569
language English
publishDate 2023-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-5ef3ccd17f40404da62eabbf074b37842025-02-07T11:06:36ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-02-01361G253555810.5802/crmath.42110.5802/crmath.421On the square-root approximation finite volume scheme for nonlinear drift-diffusion equationsCancès, Clément0Venel, Juliette1Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France.Univ. Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS – Laboratoire de Matériaux Céramiques et de Mathématiques, F-59313 Valenciennes, France.We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We show that the scheme admits a unique discrete solution, that the natural bounds on the solution are preserved, and that it encodes the second principle of thermodynamics in the sense that some free energy is dissipated along time. The convergence of the scheme is then rigorously established thanks to compactness arguments. Numerical simulations are finally provided, highlighting the overall good behavior of the scheme.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.421/
spellingShingle Cancès, Clément
Venel, Juliette
On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
Comptes Rendus. Mathématique
title On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
title_full On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
title_fullStr On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
title_full_unstemmed On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
title_short On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
title_sort on the square root approximation finite volume scheme for nonlinear drift diffusion equations
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.421/
work_keys_str_mv AT cancesclement onthesquarerootapproximationfinitevolumeschemefornonlineardriftdiffusionequations
AT veneljuliette onthesquarerootapproximationfinitevolumeschemefornonlineardriftdiffusionequations