Machine Learning-Based Predictive Maintenance at Smart Ports Using IoT Sensor Data

Maritime transportation plays a critical role in global containerized cargo logistics, with seaports serving as key nodes in this system. Ports are responsible for container loading and unloading, along with inspection, storage, and timely delivery to the destination, all of which heavily depend on...

Full description

Saved in:
Bibliographic Details
Main Authors: Sheraz Aslam, Alejandro Navarro, Andreas Aristotelous, Eduardo Garro Crevillen, Alvaro Martınez-Romero, Álvaro Martínez-Ceballos, Alessandro Cassera, Kyriacos Orphanides, Herodotos Herodotou, Michalis P. Michaelides
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/3923
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maritime transportation plays a critical role in global containerized cargo logistics, with seaports serving as key nodes in this system. Ports are responsible for container loading and unloading, along with inspection, storage, and timely delivery to the destination, all of which heavily depend on the performance of the container handling equipment (CHE). Inefficient maintenance strategies and unplanned maintenance of the port equipment can lead to operational disruptions, including unexpected delays and long waiting times in the supply chain. Therefore, the maritime industry must adopt intelligent maintenance strategies at the port to optimize operational efficiency and resource utilization. Towards this end, this study presents a machine learning (ML)-based approach for predicting faults in CHE to improve equipment reliability and overall port performance. Firstly, a statistical model was developed to check the status and health of the hydraulic system, as it is crucial for the operation of the machines. Then, several ML models were developed, including artificial neural networks (ANNs), decision trees (DTs), random forest (RF), Extreme Gradient Boosting (XGBoost), and Gaussian Naive Bayes (GNB) to predict inverter over-temperature faults due to fan failures, clogged filters, and other related issues. From the tested models, the ANNs achieved the highest performance in predicting the specific faults with a 98.7% accuracy and 98.0% F1-score.
ISSN:1424-8220