Anaerobic Co-Digestion of Cattle Manure and Sewage Sludge Using Different Inoculum Proportions

Anaerobic digestion (AD) is a sustainable strategy for converting hazardous wastes into renewable energy while supporting Sustainable Development Goals (SDGs). This study aimed to evaluate the effect of inoculum on optimizing biogas production from sewage sludge (SS) and cattle manure (CM). Bench-sc...

Full description

Saved in:
Bibliographic Details
Main Authors: Caroline Carvalho Pinto, Juliana Lobo Paes, Alexia de Sousa Gomes, Daiane Cecchin, Igor Ferreira Oliva, Romulo Cardoso Valadão, Vânia Reis de Souza Sant’Anna
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fermentation
Subjects:
Online Access:https://www.mdpi.com/2311-5637/11/7/373
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anaerobic digestion (AD) is a sustainable strategy for converting hazardous wastes into renewable energy while supporting Sustainable Development Goals (SDGs). This study aimed to evaluate the effect of inoculum on optimizing biogas production from sewage sludge (SS) and cattle manure (CM). Bench-scale digesters were fed with 0, 20, and 40% inoculum prepared at a 1:3 SS:CM ratio. Substrate and digestate were analyzed for physicochemical properties, and biogas production data were fitted using nonlinear models. Kinetic parameters ranged from 0.0770 to 0.4691 L·kg<sup>−1</sup> for Y<sub>max</sub>, from 1.0263 to 2.1343 L·kg<sup>−1</sup>·week<sup>−1</sup> for μ<sub>max</sub>, and from 0.8168 to 8.0114 weeks for λ, depending on the ratio. The 1:3 SS:CM with 40% inoculum significantly improved biogas production by reducing the lag phase and increasing weekly yield, with the Gompertz model showing the best fit to the digestion kinetics. This was particularly evident due to the favorable conditions for microbial adaptation and efficient substrate degradation. The results reinforce the concept of optimization as defined in this study, wherein the application of inoculum enhances the performance of AD by improving the physicochemical conditions of the substrate and accelerating microbial activity, thereby resulting in increased methane (CH<sub>4</sub>) generation and overall biogas yield.
ISSN:2311-5637