Solid-State MWIR Beam Steering Using Optical Phased Array on Germanium-Silicon Photonic Platform
We demonstrate a chip-scale germanium-silicon optical phased array (OPA) fabricated on a CMOS-compatible platform capable of 2D beam steering in the mid-infrared wavelength range. The OPA included a specially designed grating emitter waveguide array with uniform emission intensity along the <ital...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2019-01-01
|
| Series: | IEEE Photonics Journal |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/8896888/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We demonstrate a chip-scale germanium-silicon optical phased array (OPA) fabricated on a CMOS-compatible platform capable of 2D beam steering in the mid-infrared wavelength range. The OPA included a specially designed grating emitter waveguide array with uniform emission intensity along the <italic>mm</italic>-length waveguide propagation to realize very sharp instantaneous field-of-view (IFOV) and wide beam-steering total-field-of-view (TFOV). The experimental results indicated lateral beam-steering TFOV up to 12.7° by phase-tuning the waveguide array and longitudinal TFOV up to 12° by wavelength tuning. The 3-dB beam divergence is 3.08° × 0.18°. The demonstrated OPA architecture can employ wafer-scale fabrication and integration while supporting sensing and imaging applications in the mid-infrared spectral range. |
|---|---|
| ISSN: | 1943-0655 |