The continous Legendre transform, its inverse transform, and applications
This paper is concerned with the continuous Legendre transform, derived from the classical discrete Legendre transform by replacing the Legendre polynomial Pk(x) by the function Pλ(x) with λ real. Another approach to T.M. MacRobert's inversion formula is found; for this purpose an inverse Legen...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1980-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S016117128000004X |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the continuous Legendre transform, derived from the classical discrete Legendre transform by replacing the Legendre polynomial Pk(x) by the function Pλ(x) with λ real. Another approach to T.M. MacRobert's inversion formula is found; for this purpose an inverse Legendre transform, mapping L1(ℝ+) into L2(−1,1), is defined. Its inversion in turn is naturally achieved by the continuous Legendre transform. One application is devoted to the Shannon sampling theorem in the Legendre frame together with a new type of error estimate. The other deals with a new representation of Legendre functions giving information about their behaviour near the point x=−1. |
---|---|
ISSN: | 0161-1712 1687-0425 |