Decoding Agricultural Drought Resilience: A Triple-Validated Random Forest Framework Integrating Multi-Source Remote Sensing for High-Resolution Monitoring in the North China Plain
Agricultural drought poses a severe threat to food security in the North China Plain, necessitating accurate and timely monitoring approaches. This study presents a novel drought assessment framework that innovatively integrates multiple remote sensing indices through an optimized random forest algo...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/8/1404 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Agricultural drought poses a severe threat to food security in the North China Plain, necessitating accurate and timely monitoring approaches. This study presents a novel drought assessment framework that innovatively integrates multiple remote sensing indices through an optimized random forest algorithm, achieving unprecedented accuracy in regional drought monitoring. The framework introduces three key innovations: (1) a systematic integration of six drought-related factors including vegetation condition index (VCI), temperature condition index (TCI), precipitation condition index (PCI), land cover type (LC), aspect (ASPECT), and available water capacity (AWC); (2) an optimized random forest algorithm configuration with 100 decision trees and enhanced feature extraction capability; and (3) a robust triple-validation strategy combining standardized precipitation evapotranspiration index (SPEI), comprehensive meteorological drought index (CI), and soil moisture verification. The framework demonstrates exceptional performance with R<sup>2</sup> values consistently above 0.80 for monthly assessments, reaching 0.86 during autumn and 0.73 during summer seasons. Particularly, it achieves 87% accuracy in mild drought (−1.0 < SPEI ≤ −0.5) and 85% in moderate drought (−1.5 < SPEI ≤ −1.0) detection. The 20-year (2000–2019) spatiotemporal analysis reveals that moderate drought events dominated the region (23.7% of total occurrences), with significant intensification during the 2010–2012 and 2014–2016 periods. Summer drought frequency peaked at 12–15 months in south-central Shandong (37°N, 117°E) and eastern Henan (34°N, 114°E). The framework’s high spatial resolution (1 km) and comprehensive validation protocol establish a reliable foundation for agricultural drought monitoring and water resource management, offering a transferable methodology for regional drought assessment worldwide. |
|---|---|
| ISSN: | 2072-4292 |