Optimizing FSP Parameters for AA5083/SiC Composites: A Comparative Analysis of Taguchi and Regression
The fabrication of AA5083/SiC composites by the friction stir processing (FSP) method is the main objective of this study. The study looks at how the mechanical properties of the composites are affected by three important process parameters: traversal speed, rotational speed, and tilt angle. The Tag...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/15/3/280 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The fabrication of AA5083/SiC composites by the friction stir processing (FSP) method is the main objective of this study. The study looks at how the mechanical properties of the composites are affected by three important process parameters: traversal speed, rotational speed, and tilt angle. The Taguchi L<sub>9</sub> design matrix was used to effectively investigate parameter effects, decreasing experimental trials and cutting expenses. Tensile testing measured tensile strength, whereas microhardness tests evaluated hardness. The findings showed that a maximum tensile strength of 243 MPa and a maximum microhardness of 94.80 HV were attained. The findings also showed that the optimal ultimate tensile strength (UTS) and percentage elongation (PE) were achieved at a tilt angle of 2°, a traverse speed of 30 mm per minute, and a rotating speed of 900 rev/min. On the other hand, a slightly greater traverse speed of 45 mm per minute was required to reach maximal microhardness (MH) with the same rotational speed and tilt angle. Analysis of variance (ANOVA) showed that rotational speed has a substantial impact on all mechanical properties, highlighting how important it is for particle dispersion and grain refining. This work is unique in that it systematically optimizes FSP parameters by using regression analysis and the Taguchi technique in addition to ANOVA. This allows for a better understanding of how these factors affect the mechanical properties of SiC-reinforced composites. The findings contribute to advancing the cost-effective fabrication of high-performance metal matrix composites for industrial applications requiring enhanced strength and durability. |
|---|---|
| ISSN: | 2075-4701 |