COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter

We present 72 cosmological dark-matter--only N -body zoom-in simulations with initial conditions beyond cold, collisionless dark matter (CDM), as the first installment of the COZMIC suite. We simulate Milky Way (MW) analogs with linear matter power spectra P ( k ) for (i) thermal-relic warm dark mat...

Full description

Saved in:
Bibliographic Details
Main Authors: Ethan O. Nadler, Rui An, Vera Gluscevic, Andrew Benson, Xiaolong Du
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/adceef
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850101229534838784
author Ethan O. Nadler
Rui An
Vera Gluscevic
Andrew Benson
Xiaolong Du
author_facet Ethan O. Nadler
Rui An
Vera Gluscevic
Andrew Benson
Xiaolong Du
author_sort Ethan O. Nadler
collection DOAJ
description We present 72 cosmological dark-matter--only N -body zoom-in simulations with initial conditions beyond cold, collisionless dark matter (CDM), as the first installment of the COZMIC suite. We simulate Milky Way (MW) analogs with linear matter power spectra P ( k ) for (i) thermal-relic warm dark matter (WDM) with masses m _WDM  ∈ [3, 4, 5, 6, 6.5, 10]keV, (ii) fuzzy dark matter (FDM) with masses m _FDM  ∈ [25.9,69.4, 113, 151, 185, 490] × 10 ^−22 eV, and (iii) interacting dark matter (IDM) with a velocity-dependent elastic proton scattering cross section σ  =  σ _0 v ^n , relative particle velocity scaling n  ∈ [2, 4], and dark matter mass m _IDM  ∈ [10 ^−4 , 10 ^−2 , 1] GeV. Subhalo mass function (SHMF) suppression is significantly steeper in FDM versus WDM, while dark acoustic oscillations in P ( k ) can reduce SHMF suppression for IDM. We fit SHMF models to our simulation results and derive new bounds on WDM and FDM from the MW satellite population, obtaining m _WDM  > 5.9 keV and m _FDM  > 1.4 × 10 ^−20 eV at 95% confidence; these limits are ≈10% weaker and 5× stronger than previous constraints owing to the updated transfer functions and SHMF models, respectively. We estimate IDM bounds for n = 2 ( n = 4) and obtain σ _0  < 1.0 × 10 ^−27 cm ^2 , 1.3 × 10 ^−24 cm ^2 , and 3.1 × 10 ^−23 cm ^2 ( σ _0  < 9.9 × 10 ^−27 cm ^2 , 9.8 × 10 ^−21 cm ^2 , and 2.1 × 10 ^−17 cm ^2 ) for m _IDM  = 10 ^−4 , 10 ^−2 , and 1 GeV, respectively. Thus, future development of IDM SHMF models can improve IDM cross section bounds by up to a factor of ∼20 with current data. COZMIC presents an important step toward accurate small-scale structure modeling in beyond-CDM cosmologies, critical to upcoming observational searches for dark matter physics.
format Article
id doaj-art-5db5c7f5115a48db9b0ff7bb47240652
institution DOAJ
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-5db5c7f5115a48db9b0ff7bb472406522025-08-20T02:40:05ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-01986212710.3847/1538-4357/adceefCOZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark MatterEthan O. Nadler0https://orcid.org/0000-0002-1182-3825Rui An1https://orcid.org/0000-0001-9543-5012Vera Gluscevic2https://orcid.org/0000-0002-3589-8637Andrew Benson3https://orcid.org/0000-0001-5501-6008Xiaolong Du4https://orcid.org/0000-0003-0728-2533Department of Astronomy & Astrophysics, University of California , San Diego, La Jolla, CA 92093, USA ; enadler@ucsd.edu; Carnegie Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USA; Department of Physics & Astronomy, University of Southern California , Los Angeles, CA 90007, USA ; vera.gluscevic@usc.eduDepartment of Physics & Astronomy, University of Southern California , Los Angeles, CA 90007, USA ; vera.gluscevic@usc.eduDepartment of Physics & Astronomy, University of Southern California , Los Angeles, CA 90007, USA ; vera.gluscevic@usc.eduCarnegie Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USADepartment of Physics and Astronomy, University of California , Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USAWe present 72 cosmological dark-matter--only N -body zoom-in simulations with initial conditions beyond cold, collisionless dark matter (CDM), as the first installment of the COZMIC suite. We simulate Milky Way (MW) analogs with linear matter power spectra P ( k ) for (i) thermal-relic warm dark matter (WDM) with masses m _WDM  ∈ [3, 4, 5, 6, 6.5, 10]keV, (ii) fuzzy dark matter (FDM) with masses m _FDM  ∈ [25.9,69.4, 113, 151, 185, 490] × 10 ^−22 eV, and (iii) interacting dark matter (IDM) with a velocity-dependent elastic proton scattering cross section σ  =  σ _0 v ^n , relative particle velocity scaling n  ∈ [2, 4], and dark matter mass m _IDM  ∈ [10 ^−4 , 10 ^−2 , 1] GeV. Subhalo mass function (SHMF) suppression is significantly steeper in FDM versus WDM, while dark acoustic oscillations in P ( k ) can reduce SHMF suppression for IDM. We fit SHMF models to our simulation results and derive new bounds on WDM and FDM from the MW satellite population, obtaining m _WDM  > 5.9 keV and m _FDM  > 1.4 × 10 ^−20 eV at 95% confidence; these limits are ≈10% weaker and 5× stronger than previous constraints owing to the updated transfer functions and SHMF models, respectively. We estimate IDM bounds for n = 2 ( n = 4) and obtain σ _0  < 1.0 × 10 ^−27 cm ^2 , 1.3 × 10 ^−24 cm ^2 , and 3.1 × 10 ^−23 cm ^2 ( σ _0  < 9.9 × 10 ^−27 cm ^2 , 9.8 × 10 ^−21 cm ^2 , and 2.1 × 10 ^−17 cm ^2 ) for m _IDM  = 10 ^−4 , 10 ^−2 , and 1 GeV, respectively. Thus, future development of IDM SHMF models can improve IDM cross section bounds by up to a factor of ∼20 with current data. COZMIC presents an important step toward accurate small-scale structure modeling in beyond-CDM cosmologies, critical to upcoming observational searches for dark matter physics.https://doi.org/10.3847/1538-4357/adceefDark matterGalaxy abundancesMilky Way dark matter haloN-body simulationsWarm dark matterGalaxy dark matter halos
spellingShingle Ethan O. Nadler
Rui An
Vera Gluscevic
Andrew Benson
Xiaolong Du
COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter
The Astrophysical Journal
Dark matter
Galaxy abundances
Milky Way dark matter halo
N-body simulations
Warm dark matter
Galaxy dark matter halos
title COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter
title_full COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter
title_fullStr COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter
title_full_unstemmed COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter
title_short COZMIC. I. Cosmological Zoom-in Simulations with Initial Conditions Beyond Cold Dark Matter
title_sort cozmic i cosmological zoom in simulations with initial conditions beyond cold dark matter
topic Dark matter
Galaxy abundances
Milky Way dark matter halo
N-body simulations
Warm dark matter
Galaxy dark matter halos
url https://doi.org/10.3847/1538-4357/adceef
work_keys_str_mv AT ethanonadler cozmicicosmologicalzoominsimulationswithinitialconditionsbeyondcolddarkmatter
AT ruian cozmicicosmologicalzoominsimulationswithinitialconditionsbeyondcolddarkmatter
AT veragluscevic cozmicicosmologicalzoominsimulationswithinitialconditionsbeyondcolddarkmatter
AT andrewbenson cozmicicosmologicalzoominsimulationswithinitialconditionsbeyondcolddarkmatter
AT xiaolongdu cozmicicosmologicalzoominsimulationswithinitialconditionsbeyondcolddarkmatter