Crosswise Wind Shear Represented as a Ramped Velocity Profile Impacting a Forward-Moving Aircraft
Abrupt changes in wind velocities over small distances in a lateral or vertical direction can produce wind shear which is known to have serious effects upon the performance of an aircraft. Brought about by large-scale changes in the atmospheric conditions, it is a three-dimensional flow phenomenon i...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/7594737 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abrupt changes in wind velocities over small distances in a lateral or vertical direction can produce wind shear which is known to have serious effects upon the performance of an aircraft. Brought about by large-scale changes in the atmospheric conditions, it is a three-dimensional flow phenomenon imposing severe velocity gradients on an aircraft from all possible directions. While it would be difficult to model an instantaneous velocity gradient in a lateral plane, a vortical flow impinging from the sides which represents a wind shear in a vertical direction is imposed on a forward-moving aircraft to investigate the effect on the aerodynamic performance. The maximum shear wind speed from the side was fixed at 0.3 times the forward velocity. After due validations under no-wind shear conditions on simpler half-reflection plane models, a BGK airfoil-based full 3D wing and the ONERA M6 3D wing model were selected for preliminary studies. The investigation was concluded using the ARA M100 wing-fuselage model. |
---|---|
ISSN: | 1687-5966 1687-5974 |