Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors

For subject <i>i</i>, we monitor an event that can occur multiple times over a random observation window [0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>i<...

Full description

Saved in:
Bibliographic Details
Main Authors: Ravinath Alahakoon, Gideon K. D. Zamba, Xuerong Meggie Wen, Akim Adekpedjou
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/113
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549140857716736
author Ravinath Alahakoon
Gideon K. D. Zamba
Xuerong Meggie Wen
Akim Adekpedjou
author_facet Ravinath Alahakoon
Gideon K. D. Zamba
Xuerong Meggie Wen
Akim Adekpedjou
author_sort Ravinath Alahakoon
collection DOAJ
description For subject <i>i</i>, we monitor an event that can occur multiple times over a random observation window [0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>i</mi></msub></semantics></math></inline-formula>). At each recurrence, <i>p</i> concomitant variables, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold">x</mi><mi>i</mi></msub></semantics></math></inline-formula>, associated to the event recurrence are recorded—a subset (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≤</mo><mi>p</mi></mrow></semantics></math></inline-formula>) of which is measured with errors. To circumvent the problem of bias and consistency associated with parameter estimation in the presence of measurement errors, we propose inference for corrected estimating equations with well-behaved roots under an additive measurement errors model. We show that estimation is essentially unbiased under the corrected profile likelihood for recurrent events, in comparison to biased estimations under a likelihood function that ignores correction. We propose methods for obtaining estimators of error variance and discuss the properties of the estimators. We further investigate the case of misspecified error models and show that the resulting estimators under misspecification converge to a value different from that of the true parameter—thereby providing a basis for bias assessment. We demonstrate the foregoing correction methods on an open-source rhDNase dataset gathered in a clinical setting.
format Article
id doaj-art-5d2d06c9892f4fb5804e442f874dbf65
institution Kabale University
issn 2227-7390
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-5d2d06c9892f4fb5804e442f874dbf652025-01-10T13:18:17ZengMDPI AGMathematics2227-73902024-12-0113111310.3390/math13010113Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement ErrorsRavinath Alahakoon0Gideon K. D. Zamba1Xuerong Meggie Wen2Akim Adekpedjou3Gary W. Rollins College of Business, The University of Tennessee-Chattanooga, Chattanooga, TN 37403, USADepartment of Biostatistics, The University of Iowa, Iowa City, IA 52242, USADepartment of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USADepartment of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USAFor subject <i>i</i>, we monitor an event that can occur multiple times over a random observation window [0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>i</mi></msub></semantics></math></inline-formula>). At each recurrence, <i>p</i> concomitant variables, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold">x</mi><mi>i</mi></msub></semantics></math></inline-formula>, associated to the event recurrence are recorded—a subset (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≤</mo><mi>p</mi></mrow></semantics></math></inline-formula>) of which is measured with errors. To circumvent the problem of bias and consistency associated with parameter estimation in the presence of measurement errors, we propose inference for corrected estimating equations with well-behaved roots under an additive measurement errors model. We show that estimation is essentially unbiased under the corrected profile likelihood for recurrent events, in comparison to biased estimations under a likelihood function that ignores correction. We propose methods for obtaining estimators of error variance and discuss the properties of the estimators. We further investigate the case of misspecified error models and show that the resulting estimators under misspecification converge to a value different from that of the true parameter—thereby providing a basis for bias assessment. We demonstrate the foregoing correction methods on an open-source rhDNase dataset gathered in a clinical setting.https://www.mdpi.com/2227-7390/13/1/113recurrent eventscovariate measurement errorsmodel misspecificationKullback–Leibler divergencecorrected score
spellingShingle Ravinath Alahakoon
Gideon K. D. Zamba
Xuerong Meggie Wen
Akim Adekpedjou
Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
Mathematics
recurrent events
covariate measurement errors
model misspecification
Kullback–Leibler divergence
corrected score
title Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
title_full Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
title_fullStr Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
title_full_unstemmed Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
title_short Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors
title_sort estimation and model misspecification for recurrent event data with covariates under measurement errors
topic recurrent events
covariate measurement errors
model misspecification
Kullback–Leibler divergence
corrected score
url https://www.mdpi.com/2227-7390/13/1/113
work_keys_str_mv AT ravinathalahakoon estimationandmodelmisspecificationforrecurrenteventdatawithcovariatesundermeasurementerrors
AT gideonkdzamba estimationandmodelmisspecificationforrecurrenteventdatawithcovariatesundermeasurementerrors
AT xuerongmeggiewen estimationandmodelmisspecificationforrecurrenteventdatawithcovariatesundermeasurementerrors
AT akimadekpedjou estimationandmodelmisspecificationforrecurrenteventdatawithcovariatesundermeasurementerrors