Estimation and Model Misspecification for Recurrent Event Data with Covariates Under Measurement Errors

For subject <i>i</i>, we monitor an event that can occur multiple times over a random observation window [0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>i<...

Full description

Saved in:
Bibliographic Details
Main Authors: Ravinath Alahakoon, Gideon K. D. Zamba, Xuerong Meggie Wen, Akim Adekpedjou
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/113
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For subject <i>i</i>, we monitor an event that can occur multiple times over a random observation window [0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>i</mi></msub></semantics></math></inline-formula>). At each recurrence, <i>p</i> concomitant variables, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold">x</mi><mi>i</mi></msub></semantics></math></inline-formula>, associated to the event recurrence are recorded—a subset (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≤</mo><mi>p</mi></mrow></semantics></math></inline-formula>) of which is measured with errors. To circumvent the problem of bias and consistency associated with parameter estimation in the presence of measurement errors, we propose inference for corrected estimating equations with well-behaved roots under an additive measurement errors model. We show that estimation is essentially unbiased under the corrected profile likelihood for recurrent events, in comparison to biased estimations under a likelihood function that ignores correction. We propose methods for obtaining estimators of error variance and discuss the properties of the estimators. We further investigate the case of misspecified error models and show that the resulting estimators under misspecification converge to a value different from that of the true parameter—thereby providing a basis for bias assessment. We demonstrate the foregoing correction methods on an open-source rhDNase dataset gathered in a clinical setting.
ISSN:2227-7390