Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem

In this paper, we study the existence of extremal solutions for a Caputo-type fractional-order initial value problem. By using the monotone iteration technique and the upper–lower solution method, we obtain our existence theorem when the nonlinearity satisfies a reverse-type Lipschitz condition. Not...

Full description

Saved in:
Bibliographic Details
Main Authors: Keyu Zhang, Tian Wang, Donal O’Regan, Jiafa Xu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/5/308
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850126899980795904
author Keyu Zhang
Tian Wang
Donal O’Regan
Jiafa Xu
author_facet Keyu Zhang
Tian Wang
Donal O’Regan
Jiafa Xu
author_sort Keyu Zhang
collection DOAJ
description In this paper, we study the existence of extremal solutions for a Caputo-type fractional-order initial value problem. By using the monotone iteration technique and the upper–lower solution method, we obtain our existence theorem when the nonlinearity satisfies a reverse-type Lipschitz condition. Note that our nonlinearity depends on the unknown function and its fractional-order derivative.
format Article
id doaj-art-5ce82c2d1317476db3faa026fda9384f
institution OA Journals
issn 2504-3110
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-5ce82c2d1317476db3faa026fda9384f2025-08-20T02:33:48ZengMDPI AGFractal and Fractional2504-31102025-05-019530810.3390/fractalfract9050308Extremal Solutions for a Caputo-Type Fractional-Order Initial Value ProblemKeyu Zhang0Tian Wang1Donal O’Regan2Jiafa Xu3School of Mathematics, Qilu Normal University, Jinan 250013, ChinaSchool of Mathematics, Qilu Normal University, Jinan 250013, ChinaSchool of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, IrelandSchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, ChinaIn this paper, we study the existence of extremal solutions for a Caputo-type fractional-order initial value problem. By using the monotone iteration technique and the upper–lower solution method, we obtain our existence theorem when the nonlinearity satisfies a reverse-type Lipschitz condition. Note that our nonlinearity depends on the unknown function and its fractional-order derivative.https://www.mdpi.com/2504-3110/9/5/308Caputo-type fractional-order differential equationsinitial value problemsextremal solutionsupper–lower solution methods
spellingShingle Keyu Zhang
Tian Wang
Donal O’Regan
Jiafa Xu
Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
Fractal and Fractional
Caputo-type fractional-order differential equations
initial value problems
extremal solutions
upper–lower solution methods
title Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
title_full Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
title_fullStr Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
title_full_unstemmed Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
title_short Extremal Solutions for a Caputo-Type Fractional-Order Initial Value Problem
title_sort extremal solutions for a caputo type fractional order initial value problem
topic Caputo-type fractional-order differential equations
initial value problems
extremal solutions
upper–lower solution methods
url https://www.mdpi.com/2504-3110/9/5/308
work_keys_str_mv AT keyuzhang extremalsolutionsforacaputotypefractionalorderinitialvalueproblem
AT tianwang extremalsolutionsforacaputotypefractionalorderinitialvalueproblem
AT donaloregan extremalsolutionsforacaputotypefractionalorderinitialvalueproblem
AT jiafaxu extremalsolutionsforacaputotypefractionalorderinitialvalueproblem