Renewable Energy Use for Conversion of Residential House into an Off-Grid Building—Case Study
The reduction of harmful emissions is shaping trends across many industries, including architecture and building. With rising ecological awareness and the threat of climate change, architects, construction engineers, and developers are focusing on innovative solutions to minimize the construction se...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/9/2301 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The reduction of harmful emissions is shaping trends across many industries, including architecture and building. With rising ecological awareness and the threat of climate change, architects, construction engineers, and developers are focusing on innovative solutions to minimize the construction sector’s environmental impact. This paper presents a technical and management approach system using renewable energy sources, based on an existing single-family house with known energy consumption. The aim is to achieve energy independence by relying solely on on-site electricity generation and storage, while remaining connected to water and sewage infrastructure. Utilizing renewable energy sources enhances self-sufficiency and investment profitability. The study evaluates the house’s energy consumption to optimally select electricity supply solutions, including a small wind farm and photovoltaic installation integrated with appropriate electricity storage. This is crucial due to the air heat pump used for heating and domestic hot water, which requires electricity. An hourly simulation of the system’s operation over a year verified the adequacy of the selected devices. Additionally, two different locations were analyzed to assess how varying climate and wind conditions influence the design and performance of off-grid energy systems. The analysis showed that solar and wind systems can meet annual energy demand, but limited storage capacity prevents full autonomy. Replacing the heat pump with a biomass boiler reduces electricity use by about 25% and battery needs by 40%, though seasonal energy surpluses remain a challenge. This concept aligns with the goal of achieving climate neutrality by 2050. |
|---|---|
| ISSN: | 1996-1073 |