Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico

This study evaluates four Machine Learning Algorithms—Random Forest (RF), K-Means Clustering, Support Vector Machine (SVM), and Classification and Regression Trees (CART)—for precise land use and land cover (LULC) classification in the Monterrey Metropolitan Area. During the peri...

Full description

Saved in:
Bibliographic Details
Main Authors: K. D. Rodríguez González, L. E. Arista Cázares, F. D. Yépez Rincón
Format: Article
Language:English
Published: Copernicus Publications 2024-11-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://isprs-annals.copernicus.org/articles/X-3-2024/371/2024/isprs-annals-X-3-2024-371-2024.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850178566856114176
author K. D. Rodríguez González
L. E. Arista Cázares
F. D. Yépez Rincón
author_facet K. D. Rodríguez González
L. E. Arista Cázares
F. D. Yépez Rincón
author_sort K. D. Rodríguez González
collection DOAJ
description This study evaluates four Machine Learning Algorithms—Random Forest (RF), K-Means Clustering, Support Vector Machine (SVM), and Classification and Regression Trees (CART)—for precise land use and land cover (LULC) classification in the Monterrey Metropolitan Area. During the period 2016-2019, and with alternating wet and dry season classifications, the research addresses challenges in identifying narrow rivers, using geospatial tools and it does notably the Pesqueria River, which is specially the most narrow and shallow river in the area. Five classes—Water, Vegetation, Urban, and Soil—were classified, achieving precision rates above 85%. Remarkably, SVM exhibited an excellent accuracy, particularly for narrow rivers, showcasing its utility in complex urban landscapes. The study utilizes high resolution satellite imagery with a spatial resolution of 4.7m, contributing to the reliability of the results. Emphasizing temporal dynamics, the research links LULC changes to urbanization, infrastructure, and seasonal variations, offering vital insights for sustainable urban development.
format Article
id doaj-art-5cb12997ea784b1e80000536a6dfe32c
institution OA Journals
issn 2194-9042
2194-9050
language English
publishDate 2024-11-01
publisher Copernicus Publications
record_format Article
series ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj-art-5cb12997ea784b1e80000536a6dfe32c2025-08-20T02:18:42ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502024-11-01X-3-202437137510.5194/isprs-annals-X-3-2024-371-2024Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, MexicoK. D. Rodríguez González0L. E. Arista Cázares1F. D. Yépez Rincón2Geomatics Department, Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, MexicoGeomatics Department, Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, MexicoGeomatics Department, Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, MexicoThis study evaluates four Machine Learning Algorithms—Random Forest (RF), K-Means Clustering, Support Vector Machine (SVM), and Classification and Regression Trees (CART)—for precise land use and land cover (LULC) classification in the Monterrey Metropolitan Area. During the period 2016-2019, and with alternating wet and dry season classifications, the research addresses challenges in identifying narrow rivers, using geospatial tools and it does notably the Pesqueria River, which is specially the most narrow and shallow river in the area. Five classes—Water, Vegetation, Urban, and Soil—were classified, achieving precision rates above 85%. Remarkably, SVM exhibited an excellent accuracy, particularly for narrow rivers, showcasing its utility in complex urban landscapes. The study utilizes high resolution satellite imagery with a spatial resolution of 4.7m, contributing to the reliability of the results. Emphasizing temporal dynamics, the research links LULC changes to urbanization, infrastructure, and seasonal variations, offering vital insights for sustainable urban development.https://isprs-annals.copernicus.org/articles/X-3-2024/371/2024/isprs-annals-X-3-2024-371-2024.pdf
spellingShingle K. D. Rodríguez González
L. E. Arista Cázares
F. D. Yépez Rincón
Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico
title_full Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico
title_fullStr Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico
title_full_unstemmed Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico
title_short Spatiotemporal land use land cover (LULC) change analysis of urban narrow river using Google Earth Engine and Machine learning algorithms in Monterrey, Mexico
title_sort spatiotemporal land use land cover lulc change analysis of urban narrow river using google earth engine and machine learning algorithms in monterrey mexico
url https://isprs-annals.copernicus.org/articles/X-3-2024/371/2024/isprs-annals-X-3-2024-371-2024.pdf
work_keys_str_mv AT kdrodriguezgonzalez spatiotemporallanduselandcoverlulcchangeanalysisofurbannarrowriverusinggoogleearthengineandmachinelearningalgorithmsinmonterreymexico
AT learistacazares spatiotemporallanduselandcoverlulcchangeanalysisofurbannarrowriverusinggoogleearthengineandmachinelearningalgorithmsinmonterreymexico
AT fdyepezrincon spatiotemporallanduselandcoverlulcchangeanalysisofurbannarrowriverusinggoogleearthengineandmachinelearningalgorithmsinmonterreymexico