A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery

Existing deep learning-based spatiotemporal fusion (STF) methods for remote sensing imagery often focus exclusively on capturing temporal changes or enhancing spatial details while failing to fully leverage spectral information from coarse images. To address these limitations, we propose a Bidirecti...

Full description

Saved in:
Bibliographic Details
Main Authors: Dandan Zhou, Ke Wu, Gang Xu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6649
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849467445390082048
author Dandan Zhou
Ke Wu
Gang Xu
author_facet Dandan Zhou
Ke Wu
Gang Xu
author_sort Dandan Zhou
collection DOAJ
description Existing deep learning-based spatiotemporal fusion (STF) methods for remote sensing imagery often focus exclusively on capturing temporal changes or enhancing spatial details while failing to fully leverage spectral information from coarse images. To address these limitations, we propose a Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration (BCSR-STF). The network integrates temporal and spatial information using a Bidirectional Cross Fusion (BCF) module and restores spectral fidelity through a Global Spectral Restoration and Feature Enhancement (GSRFE) module, which combines Adaptive Instance Normalization and spatial attention mechanisms. Additionally, a Progressive Spatiotemporal Feature Fusion and Restoration (PSTFR) module employs multi-scale iterative optimization to enhance the interaction between high- and low-level features. Experiments on three datasets demonstrate the superiority of BCSR-STF, achieving significant improvements in capturing seasonal variations and handling abrupt land cover changes compared to state-of-the-art methods.
format Article
id doaj-art-5ca2586e25c743569e8e2d1bac6ae8b2
institution Kabale University
issn 2076-3417
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-5ca2586e25c743569e8e2d1bac6ae8b22025-08-20T03:26:15ZengMDPI AGApplied Sciences2076-34172025-06-011512664910.3390/app15126649A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing ImageryDandan Zhou0Ke Wu1Gang Xu2School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, ChinaSchool of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, ChinaInstitute of New Energy Equipment, Zhejiang College of Security Technology, Wenzhou 325000, ChinaExisting deep learning-based spatiotemporal fusion (STF) methods for remote sensing imagery often focus exclusively on capturing temporal changes or enhancing spatial details while failing to fully leverage spectral information from coarse images. To address these limitations, we propose a Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration (BCSR-STF). The network integrates temporal and spatial information using a Bidirectional Cross Fusion (BCF) module and restores spectral fidelity through a Global Spectral Restoration and Feature Enhancement (GSRFE) module, which combines Adaptive Instance Normalization and spatial attention mechanisms. Additionally, a Progressive Spatiotemporal Feature Fusion and Restoration (PSTFR) module employs multi-scale iterative optimization to enhance the interaction between high- and low-level features. Experiments on three datasets demonstrate the superiority of BCSR-STF, achieving significant improvements in capturing seasonal variations and handling abrupt land cover changes compared to state-of-the-art methods.https://www.mdpi.com/2076-3417/15/12/6649spatiotemporal fusionremote sensingtime direction and scale directionspectral restoration
spellingShingle Dandan Zhou
Ke Wu
Gang Xu
A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery
Applied Sciences
spatiotemporal fusion
remote sensing
time direction and scale direction
spectral restoration
title A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery
title_full A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery
title_fullStr A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery
title_full_unstemmed A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery
title_short A Bidirectional Cross Spatiotemporal Fusion Network with Spectral Restoration for Remote Sensing Imagery
title_sort bidirectional cross spatiotemporal fusion network with spectral restoration for remote sensing imagery
topic spatiotemporal fusion
remote sensing
time direction and scale direction
spectral restoration
url https://www.mdpi.com/2076-3417/15/12/6649
work_keys_str_mv AT dandanzhou abidirectionalcrossspatiotemporalfusionnetworkwithspectralrestorationforremotesensingimagery
AT kewu abidirectionalcrossspatiotemporalfusionnetworkwithspectralrestorationforremotesensingimagery
AT gangxu abidirectionalcrossspatiotemporalfusionnetworkwithspectralrestorationforremotesensingimagery
AT dandanzhou bidirectionalcrossspatiotemporalfusionnetworkwithspectralrestorationforremotesensingimagery
AT kewu bidirectionalcrossspatiotemporalfusionnetworkwithspectralrestorationforremotesensingimagery
AT gangxu bidirectionalcrossspatiotemporalfusionnetworkwithspectralrestorationforremotesensingimagery