Novel Two-Chamber Method for High-Precision TCR Determination of Current Shunts—Part I

The temperature coefficient of resistance (TCR) plays a crucial role in ensuring the functional accuracy of systems. This article examines the determination of TCR for precision current shunts and presents a novel two-chamber method. The method uses a two-chamber setup for high-precision temperature...

Full description

Saved in:
Bibliographic Details
Main Authors: Petar Mostarac, Roman Malarić, Hrvoje Hegeduš, Alan Šala
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3197
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temperature coefficient of resistance (TCR) plays a crucial role in ensuring the functional accuracy of systems. This article examines the determination of TCR for precision current shunts and presents a novel two-chamber method. The method uses a two-chamber setup for high-precision temperature control, which ensures a reduction in measurement uncertainty when determining the TCR. The two-chamber method is applicable for resistance ratios from 0.1 to 10. The advantages of the proposed method are the improvement of the stability of the reference shunt and the reduction of the measurement uncertainty, and thus a more accurate determination of the TCR. In Part I, the influence of the individual parameters on the determination of the measurement uncertainty of the measured TCR is analyzed.
ISSN:1424-8220