A click-based electrocorticographic brain-computer interface enables long-term high-performance switch scan spelling
Abstract Background Brain-computer interfaces (BCIs) can restore communication for movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command click detectors provide a basic yet highly functional capability. Methods We sought to test the p...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-10-01
|
| Series: | Communications Medicine |
| Online Access: | https://doi.org/10.1038/s43856-024-00635-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background Brain-computer interfaces (BCIs) can restore communication for movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command click detectors provide a basic yet highly functional capability. Methods We sought to test the performance and long-term stability of click decoding using a chronically implanted high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human clinical trial participant (ClinicalTrials.gov, NCT03567213) with amyotrophic lateral sclerosis. We trained the participant’s click detector using a small amount of training data (<44 min across 4 days) collected up to 21 days prior to BCI use, and then tested it over a period of 90 days without any retraining or updating. Results Using a click detector to navigate a switch scanning speller interface, the study participant can maintain a median spelling rate of 10.2 characters per min. Though a transient reduction in signal power modulation can interrupt usage of a fixed model, a new click detector can achieve comparable performance despite being trained with even less data (<15 min, within 1 day). Conclusions These results demonstrate that a click detector can be trained with a small ECoG dataset while retaining robust performance for extended periods, providing functional text-based communication to BCI users. |
|---|---|
| ISSN: | 2730-664X |