Quantum-like nonlinear interferometry with frequency-engineered classical light
Abstract Quantum interferometry methods exploit quantum resources, such as photonic entanglement, to enhance phase estimation beyond classical limits. Nonlinear optics has served as a workhorse for the generation of entangled photon pairs, ensuring both energy and phase conservation, but at the cost...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-025-09533-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Quantum interferometry methods exploit quantum resources, such as photonic entanglement, to enhance phase estimation beyond classical limits. Nonlinear optics has served as a workhorse for the generation of entangled photon pairs, ensuring both energy and phase conservation, but at the cost of limited rate and degraded signal-to-noise ratio compared to laser-based interferometry approaches. We present a “quantum-like” nonlinear optical method that reaches super-resolution in classical detection regime. This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes. Our scheme utilizes two high-brightness lasers. This results in a substantially greater signal-to-noise ratio compared to its quantum counterpart. Such an approach paves the way to significantly reduced acquisition times, providing a pathway to explore signals across a broader range of bandwidth. The need to increase the frequency bandwidth of the quantum sensor significantly motivates the potential applications of this pathway. |
|---|---|
| ISSN: | 2045-2322 |