Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs

Abstract The Antibiotic Resistance Microbiology Dataset (ARMD) is a de-identified resource derived from electronic health records (EHR) that facilitates research in antimicrobial resistance (AMR). ARMD encompasses big data from adult patients collected from over 15 years at two academic-affiliated h...

Full description

Saved in:
Bibliographic Details
Main Authors: Fateme Nateghi Haredasht, Fatemeh Amrollahi, Manoj V. Maddali, Nicholas Marshall, Stephen P. Ma, Lauren N. Cooper, Andrew O. Johnson, Ziming Wei, Richard J. Medford, Sanjat Kanjilal, Niaz Banaei, Stanley Deresinski, Mary K. Goldstein, Steven M. Asch, Amy Chang, Jonathan H. Chen
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-05649-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849333780484980736
author Fateme Nateghi Haredasht
Fatemeh Amrollahi
Manoj V. Maddali
Nicholas Marshall
Stephen P. Ma
Lauren N. Cooper
Andrew O. Johnson
Ziming Wei
Richard J. Medford
Sanjat Kanjilal
Niaz Banaei
Stanley Deresinski
Mary K. Goldstein
Steven M. Asch
Amy Chang
Jonathan H. Chen
author_facet Fateme Nateghi Haredasht
Fatemeh Amrollahi
Manoj V. Maddali
Nicholas Marshall
Stephen P. Ma
Lauren N. Cooper
Andrew O. Johnson
Ziming Wei
Richard J. Medford
Sanjat Kanjilal
Niaz Banaei
Stanley Deresinski
Mary K. Goldstein
Steven M. Asch
Amy Chang
Jonathan H. Chen
author_sort Fateme Nateghi Haredasht
collection DOAJ
description Abstract The Antibiotic Resistance Microbiology Dataset (ARMD) is a de-identified resource derived from electronic health records (EHR) that facilitates research in antimicrobial resistance (AMR). ARMD encompasses big data from adult patients collected from over 15 years at two academic-affiliated hospitals, focusing on microbiological cultures, antibiotic susceptibilities, and associated clinical and demographic features. Key attributes include organism identification, susceptibility patterns for 55 antibiotics, implied susceptibility rules, and de-identified patient information. This dataset supports studies on antimicrobial stewardship, causal inference, and clinical decision-making. ARMD is designed to be reusable and interoperable, promoting collaboration and innovation in combating AMR. This paper describes the dataset’s acquisition, structure, and utility while detailing its de-identification process.
format Article
id doaj-art-5c256fdc128e44e9be7b8b2f3108e314
institution Kabale University
issn 2052-4463
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-5c256fdc128e44e9be7b8b2f3108e3142025-08-20T03:45:45ZengNature PortfolioScientific Data2052-44632025-07-011211810.1038/s41597-025-05649-7Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRsFateme Nateghi Haredasht0Fatemeh Amrollahi1Manoj V. Maddali2Nicholas Marshall3Stephen P. Ma4Lauren N. Cooper5Andrew O. Johnson6Ziming Wei7Richard J. Medford8Sanjat Kanjilal9Niaz Banaei10Stanley Deresinski11Mary K. Goldstein12Steven M. Asch13Amy Chang14Jonathan H. Chen15Stanford Center for Biomedical Informatics Research, Stanford UniversityStanford Center for Biomedical Informatics Research, Stanford UniversityDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of MedicineDivision of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of MedicineDivision of Hospital Medicine, Stanford UniversityClinical Informatics Center, University of Texas Southwestern Medical CenterInformation Services, East Carolina UniversityDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare InstituteClinical Informatics Center, University of Texas Southwestern Medical CenterDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare InstituteDivision of Infectious Diseases and Geographic Medicine, Stanford University School of MedicineDivision of Infectious Diseases and Geographic Medicine, Stanford University School of MedicineDepartment of Health Policy, Stanford University School of MedicineDivision of Primary Care and Population Health, Stanford University School of MedicineDivision of Infectious Diseases and Geographic Medicine, Stanford University School of MedicineStanford Center for Biomedical Informatics Research, Stanford UniversityAbstract The Antibiotic Resistance Microbiology Dataset (ARMD) is a de-identified resource derived from electronic health records (EHR) that facilitates research in antimicrobial resistance (AMR). ARMD encompasses big data from adult patients collected from over 15 years at two academic-affiliated hospitals, focusing on microbiological cultures, antibiotic susceptibilities, and associated clinical and demographic features. Key attributes include organism identification, susceptibility patterns for 55 antibiotics, implied susceptibility rules, and de-identified patient information. This dataset supports studies on antimicrobial stewardship, causal inference, and clinical decision-making. ARMD is designed to be reusable and interoperable, promoting collaboration and innovation in combating AMR. This paper describes the dataset’s acquisition, structure, and utility while detailing its de-identification process.https://doi.org/10.1038/s41597-025-05649-7
spellingShingle Fateme Nateghi Haredasht
Fatemeh Amrollahi
Manoj V. Maddali
Nicholas Marshall
Stephen P. Ma
Lauren N. Cooper
Andrew O. Johnson
Ziming Wei
Richard J. Medford
Sanjat Kanjilal
Niaz Banaei
Stanley Deresinski
Mary K. Goldstein
Steven M. Asch
Amy Chang
Jonathan H. Chen
Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs
Scientific Data
title Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs
title_full Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs
title_fullStr Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs
title_full_unstemmed Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs
title_short Antibiotic Resistance Microbiology Dataset (ARMD): A Resource for Antimicrobial Resistance from EHRs
title_sort antibiotic resistance microbiology dataset armd a resource for antimicrobial resistance from ehrs
url https://doi.org/10.1038/s41597-025-05649-7
work_keys_str_mv AT fatemenateghiharedasht antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT fatemehamrollahi antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT manojvmaddali antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT nicholasmarshall antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT stephenpma antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT laurenncooper antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT andrewojohnson antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT zimingwei antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT richardjmedford antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT sanjatkanjilal antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT niazbanaei antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT stanleyderesinski antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT marykgoldstein antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT stevenmasch antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT amychang antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs
AT jonathanhchen antibioticresistancemicrobiologydatasetarmdaresourceforantimicrobialresistancefromehrs