Approximation of the pth Roots of a Matrix by Using Trapezoid Rule
The computation of the roots of positive definite matrices arises in nuclear magnetic resonance, control theory, lattice quantum chromo-dynamics (QCD), and several other areas of applications. The Cauchy integral theorem which arises in complex analysis can be used for computing f(A), in particular...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Online Access: | http://dx.doi.org/10.1155/2012/634698 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The computation of the roots of positive definite matrices arises in nuclear magnetic resonance, control theory, lattice quantum chromo-dynamics (QCD), and several other areas of applications. The Cauchy integral theorem which arises in complex analysis can be used for computing f(A), in particular the roots of A, where A is a square matrix. The Cauchy integral can be approximated by using the trapezoid rule. In this paper, we aim to give a brief overview of the computation of roots of positive definite matrices by employing integral representation. Some numerical experiments are given to illustrate the theoretical results. |
|---|---|
| ISSN: | 0161-1712 1687-0425 |