Deterministic, stochastic and fractional mathematical approaches applied to AMR

In this work, we study the qualitative properties of a simple mathematical model that can be applied to the reversal of antimicrobial resistance. In particular, we analyze the model from three perspectives: ordinary differential equations (ODEs), stochastic differential equations (SDEs) driven by Br...

Full description

Saved in:
Bibliographic Details
Main Authors: Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia
Format: Article
Language:English
Published: AIMS Press 2025-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2025015
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we study the qualitative properties of a simple mathematical model that can be applied to the reversal of antimicrobial resistance. In particular, we analyze the model from three perspectives: ordinary differential equations (ODEs), stochastic differential equations (SDEs) driven by Brownian motion, and fractional differential equations (FDEs) with Caputo temporal derivatives. Finally, we address the case of Escherichia coli exposed to colistin using parameters from the literature in order to assess the validity of the qualitative properties of the model.
ISSN:1551-0018