Cup Plant (<i>Silphium perfoliatum</i>): Agronomy, Uses, and Potential Role for Land Restoration
In recent years, land degradation has become a major challenge for human society, with negative impacts on the natural habitat, the economy, and human well-being. A variety of anthropogenic and natural factors are exacerbating the processes of land degradation in the era of climate change. Land rest...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Land |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-445X/14/6/1307 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In recent years, land degradation has become a major challenge for human society, with negative impacts on the natural habitat, the economy, and human well-being. A variety of anthropogenic and natural factors are exacerbating the processes of land degradation in the era of climate change. Land restoration is an important and proactive strategy to combat this negative situation. Among the many approaches, the use of vegetation plays a central role in restoring soil health, preventing erosion, promoting biodiversity, and improving water retention. Therefore, the identification of new plant species that have the properties to contribute to land restoration is a necessity today. The plant proposed in this conceptual review for land restoration is the cup plant (<i>Silphium perfoliatum</i> L.). After a brief presentation of the agronomy, adaptability, and multiple uses of this plant species, its potential to provide important ecosystem services useful for land restoration to combat land degradation is herein emphasized. Recent studies have shown that this plant has great potential for phytoremediation of soils contaminated with heavy metals (Zn, Pb, Cr, Cd, Ni, Hg, and Co), especially in post-mining areas where pollution exceeds ecological limits. Most studies have shown that the accumulation of heavy metals is higher at the lamina stage. There is also some evidence that the cup plant thrives in flood-prone areas and contributes to their restoration. Cup plant cultivation can also reduce greenhouse gasses and increase the organic carbon content of the soil. Another method of land restoration related to the establishment of the cup plant in a given area is the suppression of weeds, particularly the prevention of the invasion of exotic weed species. Further research under different soil–climatic conditions is needed to investigate cup plant cultivation as a promising strategy for land restoration in a time when the climate is constantly changing. |
|---|---|
| ISSN: | 2073-445X |