Solving the Linear Integral Equations Based on Radial Basis Function Interpolation

The radial basis function (RBF) method, especially the multiquadric (MQ) function, was introduced in solving linear integral equations. The procedure of MQ method includes that the unknown function was firstly expressed in linear combination forms of RBFs, then the integral equation was transformed...

Full description

Saved in:
Bibliographic Details
Main Authors: Huaiqing Zhang, Yu Chen, Xin Nie
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/793582
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The radial basis function (RBF) method, especially the multiquadric (MQ) function, was introduced in solving linear integral equations. The procedure of MQ method includes that the unknown function was firstly expressed in linear combination forms of RBFs, then the integral equation was transformed into collocation matrix of RBFs, and finally, solving the matrix equation and an approximation solution was obtained. Because of the superior interpolation performance of MQ, the method can acquire higher precision with fewer nodes and low computations which takes obvious advantages over thin plate splines (TPS) method. In implementation, two types of integration schemes as the Gauss quadrature formula and regional split technique were put forward. Numerical results showed that the MQ solution can achieve accuracy of 1E-5. So, the MQ method is suitable and promising for integral equations.
ISSN:1110-757X
1687-0042