Analyzing and Forecasting Vessel Traffic Through the Panama Canal: A Comparative Study
The Panama Canal, inaugurated in 1914, continues to play a pivotal role in global maritime connectivity. In 2016, the Canal underwent a significant expansion, reshaping maritime transit by accommodating larger vessels and reinforcing its strategic importance in international trade. The objective of...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/15/8389 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Panama Canal, inaugurated in 1914, continues to play a pivotal role in global maritime connectivity. In 2016, the Canal underwent a significant expansion, reshaping maritime transit by accommodating larger vessels and reinforcing its strategic importance in international trade. The objective of this study is to identify a suitable time series statistical model to forecast the number of vessels transiting the Panama Canal. The three approaches employed were the following: the Autoregressive Integrated Moving Average (ARIMA) model, the Holt–Winters (HW) exponential smoothing method, and the Neural Network Autoregressive (NNAR) model. The models were compared based on forecasting errors to evaluate their predictive accuracy. Overall, the NNAR model exhibited slightly better predictive performance than the SARIMA (1,0,1) (0,1,1) model in terms of error, with both outperforming the Holt–Winters model by a significant margin. |
|---|---|
| ISSN: | 2076-3417 |