Combined PARP14 inhibition and PD-1 blockade promotes cytotoxic T cell quiescence and modulates macrophage polarization in relapsed melanoma

Background Programmed cell death 1 (PD-1) signaling blockade by immune checkpoint inhibitors (ICI) effectively restores immune surveillance to treat melanoma. However, chronic interferon-gamma (IFNγ)-induced immune homeostatic responses in melanoma cells contribute to immune evasion and acquired res...

Full description

Saved in:
Bibliographic Details
Main Authors: Chun Wai Wong, Rotem Leshem, Kieran Neil Sefton, I-Hsuan Lin, Dervla Tamara Isaac, Mario Niepel, Adam Hurlstone
Format: Article
Language:English
Published: BMJ Publishing Group 2025-01-01
Series:Journal for ImmunoTherapy of Cancer
Online Access:https://jitc.bmj.com/content/13/1/e010683.full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Programmed cell death 1 (PD-1) signaling blockade by immune checkpoint inhibitors (ICI) effectively restores immune surveillance to treat melanoma. However, chronic interferon-gamma (IFNγ)-induced immune homeostatic responses in melanoma cells contribute to immune evasion and acquired resistance to ICI. Poly ADP ribosyl polymerase 14 (PARP14), an IFNγ-responsive gene product, partially mediates IFNγ-driven resistance. PARP14 inhibition prolongs PD-1 blockade responses in preclinical models, but fails to achieve full tumor clearance, suggesting the involvement of additional resistance mechanisms.Methods We identified a robust PARP14 catalytic inhibitor gene signature and evaluated its association with patient survival. Using preclinical models and single-cell RNA sequencing, we investigated immune and tumor cell adaptations to PARP14 inhibition combined with PD-1 blockade.Results Combining PARP14 inhibition and PD-1 blockade suppressed tumor-associated macrophages while increasing proinflammatory memory macrophages. Moreover, this combination mitigated the terminal exhaustion of cytotoxic T cells by inducing a quiescent state, thereby preserving functionality. Despite the enhanced immune responses, tumor cells developed adaptive resistance by engaging alternative immune evasion pathways.Conclusions Although adaptive resistance mechanisms re-emerge, PARP14 inhibition combined with PD-1 blockade offers a promising strategy to enhance treatment outcomes and overcome ICI resistance in melanoma, as immune cells are primed for further therapeutic interventions that leverage the quiescent state.
ISSN:2051-1426