Debris Flow Susceptibility Prediction Using Transfer Learning: A Case Study in Western Sichuan, China

The complex geological environment in western Sichuan, China, leads to frequent debris flow disasters, posing significant threats to the lives and property of local residents. In this study, debris flow susceptibility models were developed using three machine learning algorithms: Support Vector Mach...

Full description

Saved in:
Bibliographic Details
Main Authors: Tiezhu Li, Qidi Huang, Qigang Chen
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7462
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The complex geological environment in western Sichuan, China, leads to frequent debris flow disasters, posing significant threats to the lives and property of local residents. In this study, debris flow susceptibility models were developed using three machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The models were trained with data in Songpan County and used for debris flow susceptibility prediction in Mao County, using small watersheds as assessment units. Seventeen key feature factors based on multi-source remote sensing data encompassing topography and geomorphology, geological structures, environmental elements, and human activities were selected as input parameters after assessment with Pearson correlation analysis. Model performance was rigorously evaluated through ten-fold cross-validation, and hyperparameter optimization was employed to enhance predictive accuracy. To assess the models’ robustness, the trained models were applied to the neighboring Mao County for cross-regional validation. The results consistently indicate that elevation, seismic nucleation density, population density, and distance to roads are the primary controlling factors influencing susceptibility. Comparative analysis between the Songpan and Mao County reveals that the RF model significantly outperforms SVM and XGBoost in accuracy and robustness. Therefore, the RF model is better suited for debris flow susceptibility assessment in western Sichuan. Although the effectiveness of this model may be limited by the relatively small sample size of debris flow events in the dataset and potential variations in environmental conditions across different regions, it still holds promise for providing a scientific basis and decision-making support for disaster mitigation in comparable areas of western Sichuan.
ISSN:2076-3417