Semantic Tokenization-Based Mamba for Hyperspectral Image Classification
Recently, the transformer-based model has shown superior performance in hyperspectral image classification (HSIC) due to its excellent ability to model long-term dependencies on sequence data. An important component of the transformer is the tokenizer, which can transform the features into semantic...
Saved in:
Main Authors: | Ri Ming, Na Chen, Jiangtao Peng, Weiwei Sun, Zhijing Ye |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10838328/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Ensembles of spectral-spatial convolutional neural network models for classifying soil types in hyperspectral images
by: N.A. Firsov, et al.
Published: (2023-10-01) -
A Study on the Classification of Atopic Dermatitis by Spectral Features of Hyperspectral Imaging
by: Eun Bin Kim, et al.
Published: (2025-01-01) -
Two-Level Semantic-Driven Diffusion Based Hyperspectral Pansharpening
by: Lin He, et al.
Published: (2025-01-01) -
Multiscale Attention Feature Fusion Based on Improved Transformer for Hyperspectral Image and LiDAR Data Classification
by: Aili Wang, et al.
Published: (2025-01-01) -
Enhancing Remote Sensing Semantic Segmentation Accuracy and Efficiency Through Transformer and Knowledge Distillation
by: Kang Zheng, et al.
Published: (2025-01-01)