Flow, Wind, and Stochastic Connectivity Modeling Infectious Diseases
We study in this paper the trends of the evolution of different infections using a SIR flow (first-order ODE system), completed by a differential inclusion, a geodesic motion in a gyroscopic field of forces, and a stochastic SIR perturbation of the flow (Itô ODE system). We are interested in mathema...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/6395410 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study in this paper the trends of the evolution of different infections using a SIR flow (first-order ODE system), completed by a differential inclusion, a geodesic motion in a gyroscopic field of forces, and a stochastic SIR perturbation of the flow (Itô ODE system). We are interested in mathematical analysis, bringing new results on studied evolutionary models: infection flow together with a differential inclusion, bounds of evolution, dual description of disease evolution, log-optimal and rapid path, epidemic wind (geometric dynamics), stochastic equations of evolution, and stochastic connectivity. We hope that the paper will be a guideline for strategizing optimal sociopolitical countermeasures to mitigate infectious diseases. |
---|---|
ISSN: | 1076-2787 1099-0526 |