The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel

This paper proposes a weak Galerkin (WG) finite element method for solving a multi-dimensional evolution equation with a weakly singular kernel. The temporal discretization employs the backward Euler scheme, while the fractional integral term is approximated via a piecewise constant function method....

Full description

Saved in:
Bibliographic Details
Main Authors: Haopan Zhou, Jun Zhou, Hongbin Chen
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/6/368
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849431762991579136
author Haopan Zhou
Jun Zhou
Hongbin Chen
author_facet Haopan Zhou
Jun Zhou
Hongbin Chen
author_sort Haopan Zhou
collection DOAJ
description This paper proposes a weak Galerkin (WG) finite element method for solving a multi-dimensional evolution equation with a weakly singular kernel. The temporal discretization employs the backward Euler scheme, while the fractional integral term is approximated via a piecewise constant function method. A fully discrete scheme is constructed by integrating the WG finite element approach for spatial discretization. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula>-norm stability and convergence analysis of the fully discrete scheme are rigorously established. Numerical experiments are conducted to validate the theoretical findings and demonstrate optimal convergence order in both spatial and temporal directions. The numerical results confirm that the proposed method achieves an accuracy of the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mfenced separators="" open="(" close=")"><mi>τ</mi><mo>+</mo><msup><mi>h</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></mfenced></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and <i>h</i> represent the time step and spatial mesh size, respectively. This work extends previous studies on one-dimensional problems to higher spatial dimensions, providing a robust framework for handling evolution equations with a weakly singular kernel.
format Article
id doaj-art-5a636bb6d0ae4e94b50f742d27752b20
institution Kabale University
issn 2504-3110
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-5a636bb6d0ae4e94b50f742d27752b202025-08-20T03:27:32ZengMDPI AGFractal and Fractional2504-31102025-06-019636810.3390/fractalfract9060368The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular KernelHaopan Zhou0Jun Zhou1Hongbin Chen2Bangor College, Central South University of Forestry and Technology, Changsha 410004, ChinaCollege of Computer Science and Mathematics, Central South University of Forestry and Technology, Changsha 410004, ChinaCollege of Computer Science and Mathematics, Central South University of Forestry and Technology, Changsha 410004, ChinaThis paper proposes a weak Galerkin (WG) finite element method for solving a multi-dimensional evolution equation with a weakly singular kernel. The temporal discretization employs the backward Euler scheme, while the fractional integral term is approximated via a piecewise constant function method. A fully discrete scheme is constructed by integrating the WG finite element approach for spatial discretization. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula>-norm stability and convergence analysis of the fully discrete scheme are rigorously established. Numerical experiments are conducted to validate the theoretical findings and demonstrate optimal convergence order in both spatial and temporal directions. The numerical results confirm that the proposed method achieves an accuracy of the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mfenced separators="" open="(" close=")"><mi>τ</mi><mo>+</mo><msup><mi>h</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></mfenced></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and <i>h</i> represent the time step and spatial mesh size, respectively. This work extends previous studies on one-dimensional problems to higher spatial dimensions, providing a robust framework for handling evolution equations with a weakly singular kernel.https://www.mdpi.com/2504-3110/9/6/368evolution equationweakly singular kernelweak Galerkin finite element methodbackward Euler methodstability and convergence
spellingShingle Haopan Zhou
Jun Zhou
Hongbin Chen
The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
Fractal and Fractional
evolution equation
weakly singular kernel
weak Galerkin finite element method
backward Euler method
stability and convergence
title The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
title_full The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
title_fullStr The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
title_full_unstemmed The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
title_short The Optimal <i>L</i><sup>2</sup>-Norm Error Estimate of a Weak Galerkin Finite Element Method for a Multi-Dimensional Evolution Equation with a Weakly Singular Kernel
title_sort optimal i l i sup 2 sup norm error estimate of a weak galerkin finite element method for a multi dimensional evolution equation with a weakly singular kernel
topic evolution equation
weakly singular kernel
weak Galerkin finite element method
backward Euler method
stability and convergence
url https://www.mdpi.com/2504-3110/9/6/368
work_keys_str_mv AT haopanzhou theoptimalilisup2supnormerrorestimateofaweakgalerkinfiniteelementmethodforamultidimensionalevolutionequationwithaweaklysingularkernel
AT junzhou theoptimalilisup2supnormerrorestimateofaweakgalerkinfiniteelementmethodforamultidimensionalevolutionequationwithaweaklysingularkernel
AT hongbinchen theoptimalilisup2supnormerrorestimateofaweakgalerkinfiniteelementmethodforamultidimensionalevolutionequationwithaweaklysingularkernel
AT haopanzhou optimalilisup2supnormerrorestimateofaweakgalerkinfiniteelementmethodforamultidimensionalevolutionequationwithaweaklysingularkernel
AT junzhou optimalilisup2supnormerrorestimateofaweakgalerkinfiniteelementmethodforamultidimensionalevolutionequationwithaweaklysingularkernel
AT hongbinchen optimalilisup2supnormerrorestimateofaweakgalerkinfiniteelementmethodforamultidimensionalevolutionequationwithaweaklysingularkernel