Guidelines for releasing a variant effect predictor

Abstract Computational methods for assessing the likely impacts of mutations, known as variant effect predictors (VEPs), are widely used in the assessment and interpretation of human genetic variation, as well as in other applications like protein engineering. Many different VEPs have been released,...

Full description

Saved in:
Bibliographic Details
Main Authors: Benjamin J. Livesey, Mihaly Badonyi, Mafalda Dias, Jonathan Frazer, Sushant Kumar, Kresten Lindorff-Larsen, David M. McCandlish, Rose Orenbuch, Courtney A. Shearer, Lara Muffley, Julia Foreman, Andrew M. Glazer, Ben Lehner, Debora S. Marks, Frederick P. Roth, Alan F. Rubin, Lea M. Starita, Joseph A. Marsh
Format: Article
Language:English
Published: BMC 2025-04-01
Series:Genome Biology
Online Access:https://doi.org/10.1186/s13059-025-03572-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Computational methods for assessing the likely impacts of mutations, known as variant effect predictors (VEPs), are widely used in the assessment and interpretation of human genetic variation, as well as in other applications like protein engineering. Many different VEPs have been released, and there is tremendous variability in their underlying algorithms, outputs, and the ways in which the methodologies and predictions are shared. This leads to considerable difficulties for users trying to navigate the selection and application of VEPs. Here, to address these issues, we provide guidelines and recommendations for the release of novel VEPs.
ISSN:1474-760X