IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation

This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess t...

Full description

Saved in:
Bibliographic Details
Main Author: Ibrahim Mutambik
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4126
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO<sub>2</sub> emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy.
ISSN:1424-8220