Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian

We study the existence of weak solutions to the following Neumann problem involving the p(x)-Laplacian operator:  -Δp(x)u+e(x)|u|p(x)-2u=λa(x)f(u), in  Ω, ∂u/∂ν=0, on  ∂Ω. Under some appropriate conditions on the functions p,  e,  a, and  f, we prove that there exists λ¯>0 such that any λ∈(0,λ¯)...

Full description

Saved in:
Bibliographic Details
Main Author: Qing Miao
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2015/632745
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849412166394839040
author Qing Miao
author_facet Qing Miao
author_sort Qing Miao
collection DOAJ
description We study the existence of weak solutions to the following Neumann problem involving the p(x)-Laplacian operator:  -Δp(x)u+e(x)|u|p(x)-2u=λa(x)f(u), in  Ω, ∂u/∂ν=0, on  ∂Ω. Under some appropriate conditions on the functions p,  e,  a, and  f, we prove that there exists λ¯>0 such that any λ∈(0,λ¯) is an eigenvalue of the above problem. Our analysis mainly relies on variational arguments based on Ekeland’s variational principle.
format Article
id doaj-art-5a03c63d141c46a290ad9f5d244187dc
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-5a03c63d141c46a290ad9f5d244187dc2025-08-20T03:34:31ZengWileyAdvances in Mathematical Physics1687-91201687-91392015-01-01201510.1155/2015/632745632745Eigenvalues for a Neumann Boundary Problem Involving the p(x)-LaplacianQing Miao0School of Mathematics and Computer Science, Yunnan Minzu University, Yunnan, Kunming 650500, ChinaWe study the existence of weak solutions to the following Neumann problem involving the p(x)-Laplacian operator:  -Δp(x)u+e(x)|u|p(x)-2u=λa(x)f(u), in  Ω, ∂u/∂ν=0, on  ∂Ω. Under some appropriate conditions on the functions p,  e,  a, and  f, we prove that there exists λ¯>0 such that any λ∈(0,λ¯) is an eigenvalue of the above problem. Our analysis mainly relies on variational arguments based on Ekeland’s variational principle.http://dx.doi.org/10.1155/2015/632745
spellingShingle Qing Miao
Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian
Advances in Mathematical Physics
title Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian
title_full Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian
title_fullStr Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian
title_full_unstemmed Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian
title_short Eigenvalues for a Neumann Boundary Problem Involving the p(x)-Laplacian
title_sort eigenvalues for a neumann boundary problem involving the p x laplacian
url http://dx.doi.org/10.1155/2015/632745
work_keys_str_mv AT qingmiao eigenvaluesforaneumannboundaryprobleminvolvingthepxlaplacian