Transient-Absorption Pump-Probe Spectra as Information-Rich Observables: Case Study of Fulvene

Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaofa Li, Jiawei Peng, Yifei Zhu, Chao Xu, Maxim F. Gelin, Feng Long Gu, Zhenggang Lan
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/7/1439
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion in fulvene by simulating evolutions of electronic populations, bond lengths and angles, and time-resolved transient absorption (TA) pump-probe (PP) spectra. TA PP spectra are evaluated on the fly by combining the symmetrical quasiclassical/Meyer–Miller–Stock–Thoss (SQC/MMST) dynamics and the doorway-window representation of spectroscopic signals. We show that the simulated time-resolved TA PP spectra reveal not only the population dynamics but also the key nuclear motions as well as mode–mode couplings. We also demonstrate that TA PP signals are not only experimental observables: They can also be considered as information-rich purely theoretical observables, which deliver more information on the CI-driven dynamics than conventional electronic populations. This information can be extracted by the appropriate theoretical analyses of time-resolved TA PP signals.
ISSN:1420-3049