A benchmark for computational analysis of animal behavior, using animal-borne tags

Abstract Background Animal-borne sensors (‘bio-loggers’) can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers,...

Full description

Saved in:
Bibliographic Details
Main Authors: Benjamin Hoffman, Maddie Cusimano, Vittorio Baglione, Daniela Canestrari, Damien Chevallier, Dominic L. DeSantis, Lorène Jeantet, Monique A. Ladds, Takuya Maekawa, Vicente Mata-Silva, Víctor Moreno-González, Anthony M. Pagano, Eva Trapote, Outi Vainio, Antti Vehkaoja, Ken Yoda, Katherine Zacarian, Ari Friedlaender
Format: Article
Language:English
Published: BMC 2024-12-01
Series:Movement Ecology
Subjects:
Online Access:https://doi.org/10.1186/s40462-024-00511-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850100516776837120
author Benjamin Hoffman
Maddie Cusimano
Vittorio Baglione
Daniela Canestrari
Damien Chevallier
Dominic L. DeSantis
Lorène Jeantet
Monique A. Ladds
Takuya Maekawa
Vicente Mata-Silva
Víctor Moreno-González
Anthony M. Pagano
Eva Trapote
Outi Vainio
Antti Vehkaoja
Ken Yoda
Katherine Zacarian
Ari Friedlaender
author_facet Benjamin Hoffman
Maddie Cusimano
Vittorio Baglione
Daniela Canestrari
Damien Chevallier
Dominic L. DeSantis
Lorène Jeantet
Monique A. Ladds
Takuya Maekawa
Vicente Mata-Silva
Víctor Moreno-González
Anthony M. Pagano
Eva Trapote
Outi Vainio
Antti Vehkaoja
Ken Yoda
Katherine Zacarian
Ari Friedlaender
author_sort Benjamin Hoffman
collection DOAJ
description Abstract Background Animal-borne sensors (‘bio-loggers’) can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers, but there exists no common framework for comparing the different machine learning techniques in this domain. This makes it difficult to, for example, identify patterns in what works well for machine learning-based analysis of bio-logger data. It also makes it difficult to evaluate the effectiveness of novel methods developed by the machine learning community. Methods To address this, we present the Bio-logger Ethogram Benchmark (BEBE), a collection of datasets with behavioral annotations, as well as a modeling task and evaluation metrics. BEBE is to date the largest, most taxonomically diverse, publicly available benchmark of this type, and includes 1654 h of data collected from 149 individuals across nine taxa. Using BEBE, we compare the performance of deep and classical machine learning methods for identifying animal behaviors based on bio-logger data. As an example usage of BEBE, we test an approach based on self-supervised learning. To apply this approach to animal behavior classification, we adapt a deep neural network pre-trained with 700,000 h of data collected from human wrist-worn accelerometers. Results We find that deep neural networks out-perform the classical machine learning methods we tested across all nine datasets in BEBE. We additionally find that the approach based on self-supervised learning out-performs the alternatives we tested, especially in settings when there is a low amount of training data available. Conclusions In light of these results, we are able to make concrete suggestions for designing studies that rely on machine learning to infer behavior from bio-logger data. Therefore, we expect that BEBE will be useful for making similar suggestions in the future, as additional hypotheses about machine learning techniques are tested. Datasets, models, and evaluation code are made publicly available at https://github.com/earthspecies/BEBE , to enable community use of BEBE.
format Article
id doaj-art-597868eb1dc44df98d4cbf34e245dda7
institution DOAJ
issn 2051-3933
language English
publishDate 2024-12-01
publisher BMC
record_format Article
series Movement Ecology
spelling doaj-art-597868eb1dc44df98d4cbf34e245dda72025-08-20T02:40:17ZengBMCMovement Ecology2051-39332024-12-0112112510.1186/s40462-024-00511-8A benchmark for computational analysis of animal behavior, using animal-borne tagsBenjamin Hoffman0Maddie Cusimano1Vittorio Baglione2Daniela Canestrari3Damien Chevallier4Dominic L. DeSantis5Lorène Jeantet6Monique A. Ladds7Takuya Maekawa8Vicente Mata-Silva9Víctor Moreno-González10Anthony M. Pagano11Eva Trapote12Outi Vainio13Antti Vehkaoja14Ken Yoda15Katherine Zacarian16Ari Friedlaender17Earth Species ProjectEarth Species ProjectUniversity de LeónUniversity de LeónCNRS BoreaGeorgia College & State UniversityAfrican Institute for Mathematical Sciences, University of StellenboschDepartment of ConservationOsaka UniversityUniversity Texas El PasoUniversity de LeónUS Geological SurveyUniversity de LeónUniversity of HelsinkiTampere UniversityNagoya UniversityEarth Species ProjectUniversity of California Santa CruzAbstract Background Animal-borne sensors (‘bio-loggers’) can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers, but there exists no common framework for comparing the different machine learning techniques in this domain. This makes it difficult to, for example, identify patterns in what works well for machine learning-based analysis of bio-logger data. It also makes it difficult to evaluate the effectiveness of novel methods developed by the machine learning community. Methods To address this, we present the Bio-logger Ethogram Benchmark (BEBE), a collection of datasets with behavioral annotations, as well as a modeling task and evaluation metrics. BEBE is to date the largest, most taxonomically diverse, publicly available benchmark of this type, and includes 1654 h of data collected from 149 individuals across nine taxa. Using BEBE, we compare the performance of deep and classical machine learning methods for identifying animal behaviors based on bio-logger data. As an example usage of BEBE, we test an approach based on self-supervised learning. To apply this approach to animal behavior classification, we adapt a deep neural network pre-trained with 700,000 h of data collected from human wrist-worn accelerometers. Results We find that deep neural networks out-perform the classical machine learning methods we tested across all nine datasets in BEBE. We additionally find that the approach based on self-supervised learning out-performs the alternatives we tested, especially in settings when there is a low amount of training data available. Conclusions In light of these results, we are able to make concrete suggestions for designing studies that rely on machine learning to infer behavior from bio-logger data. Therefore, we expect that BEBE will be useful for making similar suggestions in the future, as additional hypotheses about machine learning techniques are tested. Datasets, models, and evaluation code are made publicly available at https://github.com/earthspecies/BEBE , to enable community use of BEBE.https://doi.org/10.1186/s40462-024-00511-8Machine learningBio-loggersAnimal behaviorAccelerometersTime seriesSelf-supervised Learning
spellingShingle Benjamin Hoffman
Maddie Cusimano
Vittorio Baglione
Daniela Canestrari
Damien Chevallier
Dominic L. DeSantis
Lorène Jeantet
Monique A. Ladds
Takuya Maekawa
Vicente Mata-Silva
Víctor Moreno-González
Anthony M. Pagano
Eva Trapote
Outi Vainio
Antti Vehkaoja
Ken Yoda
Katherine Zacarian
Ari Friedlaender
A benchmark for computational analysis of animal behavior, using animal-borne tags
Movement Ecology
Machine learning
Bio-loggers
Animal behavior
Accelerometers
Time series
Self-supervised Learning
title A benchmark for computational analysis of animal behavior, using animal-borne tags
title_full A benchmark for computational analysis of animal behavior, using animal-borne tags
title_fullStr A benchmark for computational analysis of animal behavior, using animal-borne tags
title_full_unstemmed A benchmark for computational analysis of animal behavior, using animal-borne tags
title_short A benchmark for computational analysis of animal behavior, using animal-borne tags
title_sort benchmark for computational analysis of animal behavior using animal borne tags
topic Machine learning
Bio-loggers
Animal behavior
Accelerometers
Time series
Self-supervised Learning
url https://doi.org/10.1186/s40462-024-00511-8
work_keys_str_mv AT benjaminhoffman abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT maddiecusimano abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT vittoriobaglione abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT danielacanestrari abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT damienchevallier abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT dominicldesantis abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT lorenejeantet abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT moniquealadds abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT takuyamaekawa abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT vicentematasilva abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT victormorenogonzalez abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT anthonympagano abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT evatrapote abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT outivainio abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT anttivehkaoja abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT kenyoda abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT katherinezacarian abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT arifriedlaender abenchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT benjaminhoffman benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT maddiecusimano benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT vittoriobaglione benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT danielacanestrari benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT damienchevallier benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT dominicldesantis benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT lorenejeantet benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT moniquealadds benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT takuyamaekawa benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT vicentematasilva benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT victormorenogonzalez benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT anthonympagano benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT evatrapote benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT outivainio benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT anttivehkaoja benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT kenyoda benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT katherinezacarian benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags
AT arifriedlaender benchmarkforcomputationalanalysisofanimalbehaviorusinganimalbornetags