Modified Cauchy Problem with Impulse Action for Parabolic Shilov Equations
For parabolic Shilov equations with continuous coefficients, the problem of finding classical solutions that satisfy a modified initial condition with generalized data such as the Gelfand and Shilov distributions is considered. This condition arises in the approximate solution of parabolic problems...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2021/5539676 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For parabolic Shilov equations with continuous coefficients, the problem of finding classical solutions that satisfy a modified initial condition with generalized data such as the Gelfand and Shilov distributions is considered. This condition arises in the approximate solution of parabolic problems inverse in time. It linearly combines the meaning of the solution at the initial and some intermediate points in time. The conditions for the correct solvability of this problem are clarified and the formula for its solution is found. Using the results obtained, the corresponding problems with impulse action were solved. |
---|---|
ISSN: | 0161-1712 1687-0425 |