A New Measurement Method for BDS Inter-Satellite Link Based on Co-Frequency Co-Time Full Duplex System

To meet the urgent need for high-precision ranging and large-capacity transmission in the current BeiDou-3 inter-satellite link system, this paper proposes a novel two-way measurement method based on Co-frequency Co-time Full Duplex (CCFD) system. This approach effectively addresses the limitations...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Feng, Zhuo Yang, Hong Ma, Yiwen Jiao, Tao Wu, Hongbin Ma, Qimin Chen
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/11/3538
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To meet the urgent need for high-precision ranging and large-capacity transmission in the current BeiDou-3 inter-satellite link system, this paper proposes a novel two-way measurement method based on Co-frequency Co-time Full Duplex (CCFD) system. This approach effectively addresses the limitations of traditional Time-Division Half-Duplex (TDHD) systems, such as complex link establishment processes, constrained ranging accuracy, and limited transmission efficiency. Based on the spatial configuration of the BeiDou-3 satellite navigation constellation, a dynamic link constraint model is constructed, and a comprehensive link budget analysis is conducted for the entire inter-satellite measurement process. The fundamental principle, system model, and key errors of the two-way measurement in CCFD are derived in detail. Theoretical analysis and experimental simulations demonstrate that the proposed CCFD system is feasible and achieves remarkable ranging accuracy improvements. At a carrier-to-noise ratio of 61.6 dBHz, the system attains 1σ ranging accuracy of 1.9 cm, representing a 51.3% enhancement over the 3.9 cm accuracy of the TDHD system. When operating at 69.3 dBHz, the precision further improves to 0.8 cm, outperforming TDHD’s 2.2 cm by 66.8%. The introduction of CCFD technology can significantly enhance the performance level of the BeiDou-3 satellite navigation system, demonstrating broad application prospects for the future.
ISSN:1424-8220