Spatiotemporal Moiré lattice light fields
Joint space-time modulation of light fields has recently garnered intense attention for enabling precise control over both spatial and temporal characteristics of light, leading to the creation of space-time beams with unique properties, such as diffraction-free propagation and transverse orbital an...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-01-01
|
| Series: | Nanophotonics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/nanoph-2024-0562 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Joint space-time modulation of light fields has recently garnered intense attention for enabling precise control over both spatial and temporal characteristics of light, leading to the creation of space-time beams with unique properties, such as diffraction-free propagation and transverse orbital angular momentum. Here, we theoretically propose and experimentally demonstrate spatiotemporal Moiré lattice light fields by controlling the discrete rotational symmetry of a pulse’s spatiotemporal spectrum. Using a 4f pulse shaper and an x − ω modulation strategy, we generate tunable spatiotemporal Moiré patterns with varying sublattice sizes and confirm their diffraction-free behavior in time-averaged intensities. Additionally, we demonstrate spatiotemporal Moiré lattices carrying transverse orbital angular momentum. These findings provide a novel platform for studying spatiotemporal light–matter interactions and may open new possibilities for applications in other wave-based systems, such as acoustics and electron waves. |
|---|---|
| ISSN: | 2192-8614 |