Extracellular Vesicles and Their Convergence with Viral Pathways

Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of mi...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas Wurdinger, NaTosha N. Gatson, Leonora Balaj, Balveen Kaur, Xandra O. Breakefield, D. Michiel Pegtel
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Advances in Virology
Online Access:http://dx.doi.org/10.1155/2012/767694
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.
ISSN:1687-8639
1687-8647