Design and Study of a New Wave Actuator for a Boat

The design and analysis of a new wave actuator for boats is presented in this paper. The wave actuator is installed beneath the boat hull and converts the hydrodynamic forces generated by rising waves on the boat into translational thrusting forces. The wave actuator consists of a flexible water tan...

Full description

Saved in:
Bibliographic Details
Main Authors: Phan Huy Nam Anh, Hyeung-Sik Choi, Dongwook Jung, Rouchen Zhang, Mai The Vu, Hyunjoon Cho
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6756
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design and analysis of a new wave actuator for boats is presented in this paper. The wave actuator is installed beneath the boat hull and converts the hydrodynamic forces generated by rising waves on the boat into translational thrusting forces. The wave actuator consists of a flexible water tank, revolving springs, and inlet/outlet nozzles to enable passive wave-driven thrust generation without intermediate energy conversion. The compressed water in the tank of the wave actuator is expelled by the wave pressure exerted on the actuator, and the water thrust out of the nozzles propels the boat forward. The dynamics and hydrodynamics of the new wave actuator are newly modelled using second-order differential equations in this paper. The hydrodynamics of the boat with the wave actuator is mathematically analyzed, and the energy conversion capability of the wave actuator is analyzed. The results demonstrate that at a wave frequency of 0.3 Hz, the system achieves a cruising speed of 6.098 m/s and a high energy conversion efficiency of 67.9%. These findings highlight the actuator’s potential for efficient and sustainable marine propulsion in regular sea conditions.
ISSN:2076-3417