A Comparative Study of Regularization Method in Structure Load Identification

This study aims to correlate the vibration data with quantitative indicators of structural health by comparing and validating the feasibility of identifying unknown excitation forces using output vibration responses. First, numerical analysis was performed to investigate the accuracy, convergence, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Bingrong Miao, Feng Zhou, Chuanying Jiang, Xiangyu Chen, Shuwang Yang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/9204865
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to correlate the vibration data with quantitative indicators of structural health by comparing and validating the feasibility of identifying unknown excitation forces using output vibration responses. First, numerical analysis was performed to investigate the accuracy, convergence, and robustness of the load identification results for different noise levels, sensors numbers, and initial estimates of structural parameters. Then, the laboratory beam structure experiments were conducted. The results show that using the two identification methods Tikhonov (L-curve) and TSVD (GCV-curve) can successfully and accurately identify the different excitation forces of the external hammer. The TSVD based on GCV method has more advantages than the Tikhonov based on L-curve method. The proposed two kinds of load identification procedure based on vibration response can be applied to the safety performance evaluation of the railway track structure in future inverse problems research.
ISSN:1070-9622
1875-9203