STATom@ic: R Package for Automated Statistical Analysis of Omic Datasets
Background: The evolution of “omic” technologies, which measure all biological molecules of a specific type (e.g., genomics), has enabled rapid and cost-effective data acquisition, depending on the technique and sample size. This, however, generates new hurdles that need to be addressed and should b...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Stats |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2571-905X/8/1/18 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Background: The evolution of “omic” technologies, which measure all biological molecules of a specific type (e.g., genomics), has enabled rapid and cost-effective data acquisition, depending on the technique and sample size. This, however, generates new hurdles that need to be addressed and should be improved upon. This includes selecting the appropriate statistical test based on study design in a high-throughput manner. Methods: An automated statistical analysis pipeline for omic datasets that we coined STATom@ic (pronounced stat-o-matic) was developed in R programming language. Results: We developed an R package that enables statisticians, bioinformaticians, and scientists to perform assumption tests (e.g., normality and variance homogeneity) before selecting appropriate statistical tests. This analysis package can handle two-group and multiple-group comparisons. In addition, this R package can be used for many data formats including normalized counts (RNASeq) and spectral abundance (proteomics and metabolomics). STATom@ic has high precision but lower recall compared to DeSeq2. Conclusions: The STATom@ic R Package is a user-friendly stand-alone or add-on to current bioinformatic workflows that automatically performs appropriate statistical analysis based on the characteristics of the data. |
|---|---|
| ISSN: | 2571-905X |